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0. INTRODUCTION

Spaces of conjugacy classes of subgroups occur very naturally in the
study of equivariant cohomology theories. This note is concerned with
explicit computations for compact Lie groups. We give neighborhood
bases for the block of full subgroups Xgy in the space of conjugacy
classes of G = Ngp(2)(T). The findings are summarized by the following
picture.

Xgunl R .
W-Sub(T)
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The space Xg can be thought of as a “ramified double cover” of the
space W-Sub(T") of W-invariant subgroups of T". The curves and lines
in the picture are only meant to suggest a continuous imagery; they
are not part of the spaces. The conjugacy class [G] is the only limit
point in Xg,; and every other point is isolated.

In section [I, we introduce some notations and review a couple of
concepts that are possibly familiar to the readers. Then we identify the

set underlying Xg, in section [2, which is probably the most elaborate
1
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part of the note. We take a short detour to compute the Weyl groups
associated to the subgroups of G in section [3| Finally, we discuss the
topology of Xg in section [4]

We adopt the method in [4] to identify Xg,;. We go through some of
the arguments there in the present note to be relatively self-contained.
1. NOTATION
It is well-known that the Weyl group of Sp(2) is

W = Dg = (r,s|r* = 5% = 1).

We denote the maximal torus of Sp(2) by 7. Let the normalizer of T'
in Sp(2) be G, then we have the short exact sequence

1 » T — G —— W > 1.
We call a subgroup H C G full if 7(H) = W.

1.1. The group Sp(2). The division ring of quaternions is denoted H.
The vector space H? over H has the standard symplectic form given by

the formula
h k — —
<<h;) , (k;>> = hiky + hoks.

where hy, ho, k1, ko € H and k; means the quaternion conjugate of k.
The group Sp(2) is the subgroup of invertible H-linear maps H? — H?>
that preserve the standard symplectic form.

If we restrict the scalar multiplication on H? to C, we may identify
H? with the C-vector space C* = C? ® C?j. The identification we are
making is explicitly given by

) ] ay +blZ
athitaithh) gy e o
as + bgl + ng + dgk? c1 + dIZ

Co +d22

As the standard symplectic form on H? correspond to the standard
Hermitian form for C* under the above identification, the maps in
Sp(2) can be now be written as 4 X 4 unitary matrices. From now on,
by Sp(2), we shall mean its image under the embedding into U(4).

The maximal torus of Sp(2) is simply

0

T = z,welClz|=|w =1

o © o

o oo
o o8
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CONJUGACY CLASSES OF FULL SUBGROUPS OF Ngy2y(T) 3

1.2. W-modules. We choose a section o : W — G of 7 by letting

0O 0 0 1 1 0 00
SR I Y B L
10 -1 0 o0} 10 0 10
0O 0 —-10 0 -1 0 O
and letting o(r's’) = o(r)io(s)’ for 0 < i < 3,0 < j < 1. The section

o gives rise to a right action of W on T' defined as t* = o(w) 'to(w).
This makes T into a right W-module.

Remark 1. The W-action on T is typically defined by observing that
the conjugation action of G on T' descends to an action of W. In other
words, it does not matter how we lift elements of W to G to act on
T. In particular, we may pick any other section 7 and we would have
7(w) M1 (w) = o(w)to(w). This will be used later.

We chose a specific section ¢ only for concreteness. If one unravels
the proof that the Weyl group of Sp(2) is Dg, the section ¢ should be
the obvious one to pick. The reader may forget about the section o if
he wishes.

Given a full subgroup H C G, we can fit it into a commutative
diagram

1 s S« s H s W s 1

“ D

1 y T < y G —— W y 1

where S is a subgroup of T and both rows are exact. The commutative
diagram also indicates that the W-action on T restricts to a W-action
on S. This means that we only have to care about the W-invariant
subgroups of T. Moreover, for each full subgroup H of GG, we can pick
some section 7 : W — H of m : H — W, which is also a section of
7w : G — W under the subgroup inclusion H < G. Thus, we may write
H in the standard form H = H(S,7) = {s7(w) : s € S,w € W}.

The problem of classifying conjugacy classes of full subgroups of G
reduces to the following questions:

(1) For which W-submodule S of T' is there a subgroup H (S, 7)?
(2) If H(S,7) does exist for a particular S, how many conjugacy
classes are there for this S7

Group cohomology gives a good framework to think about and an-
swer these questions. We now bring in Pontrjagin duality because it is
a nice way to organize the W-submodules of T". This also prepares us
for the group cohomology calculations later.
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We will work with T additively, so we use the identification T" =
(R/Z)? from now on. Let S = R/Z be the circle group. For each
right W-submodule S C T, we can give the Pontrjagin dual S* =
Hom(S, S1) a left W-module structure by the action wf(t) = f(t¥) for
each f € S*,w € W. Let AS = ker(T* — S*) where the map T* — S*
is induced by the inclusion S — T

As an example, take the trivial submodule 0 of 7', then A° = T* can
be identified with Z?, where elements of Z? are considered as column
vectors. The group GLy(Z) has a left action on Z? by multiplication.
The W-module structure on AY is then given by the map p : W —
GL2(Z) that sends

(0 -1 (1o
"1 o0 ) "7 \o -1/

Proposition 1.1. The W -submodules of A° are given below.

(1) The lattice AS(m) — <(7g) , (7?1)> m>1.
(2) The lattice AS(m) = <(_%) , (Z» m > 1.

(3) The trivial W -submodule 0.

Proof. The proof is completely routine. Any subgroup of A? is free
abelian of rank at most 2. The rank 0 W-submodule is obviously
trivial and there are no rank 1 submodules because it has to be stable
under left action by r € W.

Note that A{(m) and Af(m) are W-submodules of A°. We show
that any W-submodule A C A° is either A?(m) or Ag(m). There is a
vector (p,q) # 0 in A with the minimum length. We claim that (p, q)
together with r(p, ¢) = (—¢,p) forms a basis for A.

They are linearly independent over Z because they are linearly inde-
pendent over R by checking a determinant. Any vector (k,1) € A°\ A

must be within /2(p? + ¢?)/2 of a point in ((p,q), (—¢,p)), so A =
((p,q), (=g, p)) by the minimality of (p, ).

Now we know (p,—q) = s(p,q) € {(p,q),(—¢.p)). By solving an
appropriate 2 x 2 linear system, we find that (p> — ¢*)/(p* + ¢*) € Z.
O

This means p = 0, ¢ = 0 or |p| = |q|, ending the proof.

2. GROUP COHOMOLOGY CALCULATIONS

We first review some basic facts from group cohomology. The mate-
rial is based on [4, §3]. Using the lattice dual functor and a Kiinneth
formula, we compute the relevant cohomology groups and describe the
set underlying Xg.
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2.1. Low-dimensional cohomology. If M is a W-module, we let
C*(W; M) be the cochain complex obtained by applying Homy, (—, M)
to the bar resolution of Z over ZW. When we speak of cocycles,
coboundaries and differentials, these will come from C*(W; M).

Recall that for a section 7 : W — G, the factor set of 7 is the function
fr: W x W = T defined by the formula f,(v,w) = 7(vw) 7 (v)7(w)
for each pair (v,w) € W x W. The factor set f, is a 2-cocycle repre-
senting the extension class €(G) in H*(W;T).

Here is how one can classify conjugacy classes of the full subgroups
of G. For each W-submodule of S, we have a short exact sequence

0 > S —— T » T/S —— 0.

This induces a long exact sequence in group cohomology. The part
that interests us is the following five-term exact sequence

HY (W;T) — H'(W:T/S) — HXW:S) — H2(W;T) — HX(W;T/S).

Proposition 2.1 (4], lemma 3.3). For each S, there is a section T :
W — G giving a full subgroup H(S,T) fitting into the diagram

1 s 9 < s H s W > 1
g |
1 s T < y G ——— W y 1

if and only if €(G) lifts to H*(W; S).
We make a simple calculation first.

Lemma 2.2 ([], lemma 3.2). Take a section 7 : W — G and a
function g : W — T. Then f., = f;0g.

The section 7¢ is defined by pointwise multiplication. The ¢ is the
differential in the cochain complex obtained from the bar resolution.
We could also write the formula in additive notation since the values
are in T'. In additive notation, f., = f; + dg.

Proof. Take v,w € W. Note that by definition dg(v, w) = g(v)“g(vw)g(w).
We calculate

-1 1

frg(v,w) = g(vw) ™ 7(vw) ™ 7(v)g(v)T(w)g(w)
= g(vw) ' (vw) (V)T (w)g(v)  g(w)
= g(vw) ™ fr (v, w)g(v)* g(w).

As everything in the last line is in 7', which means they commute, we
have f,(v,w) = f-(v,w)dg(v, w) as needed. O

)
)—1
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Proof of [2.1] 1f there is a section 7 giving a full subgroup H (S, 7), then
the factor set f, : W x W — T actually takes values in S, so €(G) lifts.

Conversely, if (G) in H*(W; T) lifts to H?(W; S), there is a 2-cocycle
z: W x W — S representing the lift. Then by the inclusion of S into
T, we can think of z as a 2-cocycle representing €(G) in H*(W;T). We
choose any section 7 so that f, is a 2-cocycle representing €(G).

The 2-cocycle z— f, is a 2-coboundary dg. We see that z = f,+dg =
frg, s0 we have a subgroup H(S,7g) fitting into the diagram as
needed. U

Proposition 2.3 ([4], lemma 3.3). Suppose there is a section T : W —
G giving a subgroup H(S,T) for a given S, the number of conjugacy
classes for S is exactly the cardinality of H*(W;T/S).

Again, we need a couple of calculational lemmas first.

Lemma 2.4. Two full subgroups H(S,T) and H(S, ") are G-conjugate
if and only if they are T-conjugate.

Proof. One way is obvious. Suppose that g 'H(S,7)g = H(S,7'). As
T is a section, we can write g = 7(w)t for some w € W and t € T.
Note the order reversal from the typical order that we used. Then

tYH(S, )t =t 7(w) P H(S, 7)T(w)t = g 'H(S,7)g = H(S,7). O
Lemma 2.5 ([4], lemma 3.2). Foranyt € T, tH(S,7)t™' = H(S, T4t).

To be clear, the section 76t is obtained by pointwise multiplication
of 7 with the 1-coboundary §t.

Proof. Let s € S and w € W. Note that by definition, §t(w) =
7(w) 7 (w)tt. The lemma follows from the calculation

tsT(w)t ! = str(w)t™! = sT(w)T(w) (W)t = s7(w)dt(w).
U

Lemma 2.6 ([4], lemma 4.1). If g : W — T is a function, then
H(S,7) = H(S,7g) if and only if the values of g are actually in S.

This is self-evident. The collection of all full subgroups of G is de-
noted by Sub(G)gn. The notation will be reintroduced in section .

Proof of[2.3 Let us fix some section 7y so that we have a subgroup
H(S, 7). We have an onto map  : CY(W;T) — Sub(GQ)g. that sends
g to H(S,mg). By lemma 2.6, x induces a bijection C*(W;T/S) —
Sub(G)g. Then by lemma and lemma [2.5] « induces a bijection
Hl(W,T/S) — Sub(G)fuu/G. ]
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2.2. Lattice dual. The Pontrjagin duality functor converts questions
about mod-W (T') to questions about W-mod(A®). The latter category
is nicer because we only need to do linear algebra. However, Pontrja-
gin duality is contravariant, so we cannot use it in group cohomology
calculations. To get a covariant functor, we use the lattice dual functor
(—)Y = Hom(—,Z).

For each W-submodule A® of A°, we define Ag = (A%)Y. From the
left W-module structure of A, we obtain a right W-module structure
on Ag by setting 6V (f) = O(wf) for each 6 € Ag and each w € W. The
W-module structure of Ag can be described as follows.

Proposition 2.7. As W-modules, Ag = A°.

Proof. If A% = 0, there is nothing to prove. With that out of the way,
there are two cases to deal with. First, consider the W-module Af (m)
and its dual Agy(m) = Af(m)". Consider the vectors

a= (1) a=(n) @G 0. @=0 3.

The vectors ey, e5 form an ordered basis for the abelian group A7 (m).
Similarly, ey, ey forms an ordered basis for Agr(m). We have an iso-
morphism ¢ : AY(m) — Agi(m) of abelian groups by sending ey, e5 to
ey, ey respectively. Then one can check that ¢ is in fact W-equivariant,
S0 ¢ is an isomorphism of W-modules.

For the W-modules A%(m) and Ag(m), we have the ordered basis

{f1, fo} and {fY, [y} respectively, where
A= (D) = () e ) G )

Similarly to before, we can check that the map 1 : Ag(m) — Agm(m)
sending f1, fo to f)’, f5 respectively is a W-module isomorphism. [

A perhaps subtle point is that although A{(m) and Afj(m) are iso-
morphic as abelian groups, they are not isomorphic as W-modules.
They are, however, related by restriction of scalars.

Consider the automorphism of Dg defined by a(r) = r, a(s) = r3s.
This gives an automorphism « of ZDg. This automorphism gives a
functor Res : W-mod— W-mod sending a W-module M to the W-
module M’ where M’ is the same as M as an abelian group, but w-m =
a(w)m for each m € M'.

Proposition 2.8. We have Res Af(m) =2 A (m) as W-modules.
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Proof. We continue using the notation from 2.7, Write the scalar mul-
tiplication in Res Af(m) as -, we have
refi=rfi=fo, r-fa=rfa=-h
and
s-fi= 7”33f1 =f1, s-fo= 7“33f2 = —fa2
Thus, we have a W-module isomorphism Res Ag(m) = A?(m) by send-

ing fi1, f2 to eq, ey respectively. O

Let us relate this new construction to the five-term exact sequence we
gave earlier. We have a commutative diagram of short exact sequences

0 y Ag —— R? y T » 0

L

0 y Ng — R? » T/S —— 0

As multiplying by |W| = 8 is an isomorphism of R — R, by using the
transfer map [2, p. 83], we obtain H'(W;R) = 0 for ¢ > 1. Looking at
the long exact sequence for the two rows and applying naturality, we
obtain the commutative squares

H(W;T) —— H(W;T/S)
l\z llz
HTY W Ay) —— HHW; Ag)
Now, the five-term exact sequence looks like
H'W;T) — HY(W;T/S) — H*(W;S) — H*(W;T) — H*(W;T/S)
l\z ln ln l\z
H*(W; Ay) — H*(W;As) H3(W;Ay) — H3(W; Ag).
The main tool of calculation is the following Kiinneth formula [5].

Proposition 2.9. Let G, G’ be finite groups and M, M’ be a G-module
and a G'-module respectively. If M, M’ are, as modules over Z, both
finitely generated and free, then we have a short exact sequence

0— @ H(G; M) HY(G; M) - H"(G x G'; M @ M)
pt+q=n

= @ Torf(H?(G; M), HY(G'; M) — 0.

pt+g=n+1
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Proposition 2.10. For n > 0, we have

I _ @y =2
H(W; A5 (m)) = {(Z/Q)m ifn=2i+1.

Moreover, H*(W; Afi(m))) = H*(W; A{(m)) as abelian groups.

Proof. Since restriction of scalars is exact, we obtain the isomorphism
of abelian groups H™(W; A$(m))) = H™(W; AP (m)).

Now we compute H™(W;Af(m)) by building it up from simpler
pieces. It is well-known that for p, ¢ > 0, we have

0 p even

VA p=20
H(Cy;Z) = dd  H"(Cy;Z) =

Z]2 p# 0 even

where Z is the unique nontrivial Cs-module with the underlying abelian
group being Z. Using the Kiinneth formula given above, we find that

) | N (Z,)2) if n = 2i;

Finally, observe that Af(m) = Coindfy o, Z ® Z as W-modules. The
proposition now follows from Shapiro’s lemma. U

Let A= {(0,0),(3,3)} be the unique W-submodule of order 2 in 7.

Proposition 2.11. There is a subgroup H fitting into the commutative
diagram

1 s 9 < s H s W > 1
() |
1 s T < y G ——— W y 1

if and only if A C S.

Proof. Consider the section 7 : W — G defined by setting

00 0 i i 0 0 0
i 0 0 0 00 0 1
=19 i 0 ol "®=lo o i 0
0 0 —i 0 0 -1 0 0
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and 7(r's’) = 7(r)'7(s)? for 0 < i < 3and 0 < i < 1. We have a
commutative diagram

1 > A < > K > W > 1
[
1 > T < > G —— W > 1

where K is the subgroup of order 16 generated by 7(r) and 7(s) in G.

By explicit computation, the factor set f, takes values in A for v, w €
W. Moreover, f, attains all values of A. As (G is not a split extension
of W by T, the proposition is established. 0

Corollary. The conjugacy classes of full subgroups of G are given by
the following table. #Conj is short for the number of conjugacy classes.

Lattice || 0| Af(m), m odd | Af (m), m even | A% (m)
#Conj || 1 0 2

3. WEYL GROUPS OF SUBGROUPS

We compute the Weyl group of full subgroups of GG in this section
using linear algebra. The plan is to prove a formula for the Weyl group
first and then proceed to examine a bit more closely the Pontrjagin
duality functor to exploit the formula. The content is based on [4], §4],
but we give more or less complete details here.

The Weyl group We(H) of a subgroup H C G is defined as the group
Ng(H)/H, where Ng(H) is the normalizer of H in GI]

For each subgroup S C T, let ST ={t € T :t¥ € S for all w € W}.
Then S is also a subgroup of T and we shall denote AS" by A3 We
first describe the normalizer in terms of ST.

Proposition 3.1 ([4], lemma 4.1). For a full subgroup H = H(S, 1),
we have the formula Ng(H) = H(S*, 7).

Proof. First, we do have a subgroup H(S™,T) because the factor set
f+ takes values in S C S* by assumption.

Any g € G can be written as g = 7(w)t for some w € W and
t € T. Then by lemma [2.5 and lemma 2.6, g~ H(S,7)g C H(S,7) is
equivalent to saying dt takes value in S. In other words, g € Ng(H) if
and only if ¢t € ST, so Ng(H) = H(S™, 7). O

Now we give an easy formula for determining Wg(H).

LOur terminology is standard in equivariant homotopy theory.
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Proposition 3.2 ([4], p. 10). For a full subgroup H = H(S,7), we
have the formula Wg(H) = ST/S = (AS/AS)*.

Proof. Consider the composition ST < H(S™,7) = Ng(H) — Ng(H)/H.
If t7(w) is in the kernel of the composite with ¢ € ST and w € W, then
tr(w) = s7(v) for some s € S and v € W. Applying 7 to both sides
shows v = w and so t = s € S. Thus, Wg(H) = S*/S.

The isomorphism S*/S = A%/AS comes from Pontrjagin duality.
Since Pontrjagin duality is exact, by applying (—)* to the short exact
sequence

0 s S <

we get the short exact sequence

T » T/S —— 0.

g

0 —— A« s T* y S s 0.

Similarly, we have (T/ST)* = AS. Applying the Pontrjagin duality
functor once more to the short exact sequence

0 > S —— ST » ST/S —— 0

and using one of the isomorphism theorems, we get (ST/S5)* =2 A5 /A%,
By the double duality isomorphism, we have S*/S* = (AS/AS)*. O

As the Pontrjagin dual of a finite abelian group is itself, when the
index [AY : Af] is finite, we have the formula Wg(H) = AS/A7.

3.1. Translating between lattices and subgroups. There are two
ways to calculate the Weyl groups from proposition 3.2l As we have
been working with lattices via Pontrjagin duality so far, we first need
a standard fact about Pontrjagin duality to help us translate between
lattices and the subgroups of 7. Then we describe how to calculate
St and A7 from S and A® respectively, so we may compute the Weyl
groups either way.

Proposition 3.3. Given a (closed) subgroup S of T and at € T'\ S,
there is some f € S* such that f(s) =0 for every s € S but f(t) # 0.

A proof of proposition is given in [7, p. 75].

Under the double duality isomorphism, we can identify s € S with
amap s : A — S! sending f € A° to f(s) € S*.
Proposition 3.4. We have S = ker((A%)* — (A%)*) for subgroups S
of T.

Proof. The inclusion S C ker((A%)* — (A%)*) follows from the def-
inition of A and A®. The reverse containment is given by proposi-

tion [3.3] O
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Here is a more conceptual way of thinking about the situation. Let
mod-W(T) and W-mod(A®) be the category of right WW-submodules
of T and the category of left WW-submodules of A° respetively. The
contravariant functor A~ : mod-W(T) — W-mod(A®) sending S —
A is an anti-isomorphism of categories by proposition .

We now give an explicit description of mod-W (T') like we have done
for W-mod(A°) in proposition [L.1]

Proposition 3.5. The W-submodules of T' are given below.
(1) The W -submodule
ko1
Sy(m) = — — ]:0<k<m0<l<m

m m

for AZ(m).
(2) The W -submodule

Sn(m):{(i,ijLi) :O§k<2m,0§l<m}

(8) The W-module T for 0.

Proof. We prove the claim for Af(m). The proof for Afj(m) is similar.
Since S = (A°/A®)* and the index [A° : AS] = m?, we know that
the subgroup S for Aj(m) has m? elements. As Sy(m) consists of m?
elements of T’ that vanishes on Af(m), the subgroup corresponding to
Af (m) must be Sy(m). O

Let S, ={teT:t"t"'eStand Sy = {s €T :tt' € S}. They are
subgroups of T.

Proposition 3.6. We have the formula ST =S, N S,.

Proof. The containment S* C S,.N.S, is obvious. Suppose now t € S,.N
Sy and v, w € W. Then t"t~! = (t"t71)t“t~! shows ST D S,NS,. O

The formula also works in more general situations where W is not
necessarily Dg with the obvious modifications. In principle, one can
calculate the Weyl groups now and it is not a difficult calculation. We
will now describe the second approach via lattices instead of working
with the subgroups directly, which is slightly nicer.

Let AY = A5 and A = AS:.

Proposition 3.7. We have the formula A = (AY, AS), which is the
abelian group generated by A5 and A?.
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Proof. This follows from proposition[3.6)and the fact A~ : mod-W (T') —
W-mod(AY) is an anti-isomorphism. U

Let A° = Z2. We pick a basis

Y1 Y2

for AS. Let X = (A\; \2) be the 2 x 2 matrix with A, Ay as columns.
We shall represent elements of S = S** as row vectors and write the
same row vector for both s and s**. For t = (a b) € T = (R/Z)?, we
have t € S if and only if tX = 0 € (R/Z)? Alternatively, we could
require that tX € Z2.

We can now describe AY and A? using linear algebra. Consider the
matrices

Mr=p<r>—12=<‘f j>7 Ms=p<s>—12=(8 _02>-

Proposition 3.8 ([4], p. 12). We have the equalities NS = M,A° and
A5 = MAS.

We need a linear algebra lemma. For every u,v € R™, we write u - v
for their dot product. If S C R™, we define u-S ={u-v:v € S}.

Lemma 3.9. Let A, B C Z™. The condition (A)z = (B)z is equivalent
to the condition that for every u € RY™ we have u- A C Z if and only
ifu- B CZ. By (A)z, we mean the Z-span of A.

The proof is straightforward linear algebra. The details are given in
the following note [6].

Proof of[3.8. We will only show that AY = M, AS.

Pick any basis A = {u1, o} of AY. By proposition , tA C Z if
and only if t € S,. For any row vector v € Z? we have tA C Z if and
only if (t +v)A C Z.

By the definition of S,, an element t = (¢ b) € T is in S, if and
only if tp(r) — t vanishes on A®. Equivalently, ¢ € S, if and only
if tM,X € Z% Let B = {M,\, M,\2}. Again, for any row vector
v € Z*, we have tB C Z if and only if (t +v)B C Z.

By lemma [3.9] we have AS = (A); = (B)z = M,A". O
Proposition 3.10. For each A% # 0, we have Wg(H) = A5 /A5 = C,.
Proof. Since M,AF(m) C M,A{(m) = Afj(m), the lattice A{, (m)
is actually Afj(m). Similarly, M,AS(m) C M.Af(m) = A?(2m) =
Afi ,(m). Note that [Af(m) : Af(m)] = [Afj(m) : A{(2m)] = 2, so we
get Wa(H) = O, for all subgroups H (S, 7). O
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4. TOPOLOGY

In the first half of this section, we define the topology on X¢,;. Then
we make explicit calculations in the second half to determine a neigh-
borhood basis at each point of Xg,y.

We can endow T' = (R/Z)? with the T-bi-invariant metric dr(t1,t2) =
min Ht~1 - tNQHOO where a,tNg varies over all possible lifts of 1, ¢, to R2.
We can extend it to a G-bi-invariant metric d on G as follows.

Write G = [],cy 0(w)T. Define

dT(tl,tg) if o= w;
d t1,o(v)ty) = .
(o(w)ts, o(v)tz) {5 if v # w.
We picked the number 5 only because 5 > d(t,ty) for each pair
t1,to € T. One can then check that d satisfies the triangle inequality
and that it is G-bi-invariant by using the fact 7" is normal in G.

Let us denote the collection of closed (hence compact) subsets of G
by K(G). The Hausdorff distance dg associated to d is defined as

dy(K, L) = max (Sup d(z,L),supd(K, y)>
zeK yeL
for each K, L € K(G). This makes K(G) into a compact metric space.
The collection of closed subgroups Sub(G) of G is then a metric sub-
space of K(G).

The underlying topological space of K(G) has the Vietoris topology,
which only depends on the topology of G, not on the metric we chose [8]
p. 67]. We could have started with a different metric on G, not even
necessarily a bi-invariant one and we would have still obtained the same
topological space Sub(G).

We define the topological space Sub(T") for the maximal torus in a
similar fashion. The collection of W-invariant subgroups W-Sub(T),
which is the set of objects of mod-W (T'), can be given the subspace
topology from Sub(7).

Let X = Sub(G)/G be the collection of conjugacy classes of G.
We give it the quotient topology under the canonical map Sub(G) —
Sub(G)/G. We denote by Sub(G)ga the subspace of Sub(G) consist-
ing of full subgroups. Similarly, X, is the subspace of X consisting of
conjugacy classes coming from full subgroups.

There is a continuous map Sub(G)gu — W-Sub(T') sending a sub-
group H(S,7) to S. This map factors through the canonical map
Sub(G)gn — Xpn- Here is a commutative diagram summarizing the
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situation.
Sub(G full —> xfull

T b

W-Sub(T)

Now we discuss some point-set topology properties of the spaces and
maps we have in the diagram above. Most of these are special cases of
basic results in transformation groups and the proofs are routine. For
brevity, we shall omit most proofs and point to suitable references.

Proposition 4.1 ([3], p. 108). The conjugation action G x Sub(G) fuu —
Sub(G) puyy is continuous.

Proposition 4.2 ([, p. 38). The space Xz is Hausdorff.
Proposition 4.3. The map p is open.

Proof. The proposition follows from the equality U = seG g tUg for
any open set U C Sub(G)g. O

We shall now describe the topology of X, by giving a neighborhood
basis at each point. We need the fundamental result of Montgomery
and Zippin.

Proposition 4.4 (Montgomery-Zippin). Consider a compact Lie group
L, a closed subgroup H of L and a neighborhood U of the identity e.
Then there is a neighborhood W C U of e such that for each subgroup
K C WH thereis au € U so that u'Ku C H.

The proof is given in [Il, p. 87]. To clarify, the set W H is obtained
by multiplying elements of W and H, so it should be thought of as a
“W-thickening” of H.

Lemma 4.5 ([4], lemma 5.3). If S C T is a subgroup, we can find a
neighborhood of S consisting only of subgroups S" C S.

Proof. Since T is itself a neighborhood of the identity in GG, the lemma
holds by Montgometry-Zippin and the fact that T is abelian. U

Lemma 4.6. For a full subgroup H(S,7) of G, dy(H,G) = du(S,T).

Proof. Note that H(S,7) C G implies dy(H,G) = sup,cq d(H, g). Fix
a point g € GG. There is a point h € H lying in the same component as
g such that d(h, g) = d(H, g) since the distance between components is
much larger than the distance between points in the same component.

By the bi-invariance of d, we can assume that g € T and we have
d(H,g) = d(S, g). This proves the lemma because d(S,T) = sup,cr d(S, ).
O



16 ZIHENG HUANG

Now we give a quantitative result on distance.

Lemma 4.7. d(Si(m),T) = d(Suy(m),T) =

1
2m”

Proof. The kernel of R? — T/Si(m) is Z[1]?. By the definition of
2

||, any lift of ¢ € T is within 5~ of Z[=]? and this distance can be
achieved.

Similarly, the kernel of R? — T'/Sy(m) is Z[£]* U (5, 5= ) + Z[ L]
The equality d(Si(m),T) = 5 follows. O

We define for each integer n > 1 a set U,, consisting of all conjugacy
classes [H (S, 7)] where S = Sy(m) or S = Sy(m) with m > n.

Proposition 4.8. (1) For each [H(S,T)] € Xpu where S # T, the

collection N'([H (S, 7)]) = {{[H(S,7)]}} is a neighborhood basis.

(2) For the point [G], the collection N([G]) = {U, :n >0} is a
neighborhood basis.

Proof. Take a subgroup S # T in W-Sub(7T). By lemma [4.5] it has a
neighborhood consisting of S” C S. If S # S, d(S',S) > 0 because
S’ is finite. There are only finitely many subgroups S’ of S, so the
singleton {S} is open in W-Sub(T).

Suppose point [H;] € Xgy maps to S € W-Sub(T'). Then g '({S})
consists of two points in Xgy, one of them being [H;]. Let us call
the other [Hs]. Since Xgy is Hausdorff, we can find disjoint open set
[Hy] € U and [Hs] € V. Now {[H]} = U N {[H],[H2]} is open, so we
have shown (1).

The inverse image of the point [G] € Xgn consists of the point
G € Sub(G)sq alone. Take a sequence of real numbers «,, such that
$ <o <1and m < my1 < 3. The open balls B,,(G) =
{H(S,7):d(S,T) < a, } form a neighborhood basis at G. Since U,, =
p (B, (G)) and p is an open map, the collection NV ([G]) is a neighbor-
hood basis for [G].

0
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