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0. Introduction

Spaces of conjugacy classes of subgroups occur very naturally in the
study of equivariant cohomology theories. This note is concerned with
explicit computations for compact Lie groups. We give neighborhood
bases for the block of full subgroups Xfull in the space of conjugacy
classes of G = NSp(2)(T ). The findings are summarized by the following
picture.

Xfull

W -Sub(T )

SII(1) SII(2) SII(3) SII(4) SII(5) SII(6) T SI(6) SI(5) SI(4) SI(3) SI(2) SI(1)

The space Xfull can be thought of as a “ramified double cover” of the
space W -Sub(T ) of W -invariant subgroups of T . The curves and lines
in the picture are only meant to suggest a continuous imagery; they
are not part of the spaces. The conjugacy class [G] is the only limit
point in Xfull and every other point is isolated.

In section 1, we introduce some notations and review a couple of
concepts that are possibly familiar to the readers. Then we identify the
set underlying Xfull in section 2, which is probably the most elaborate
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part of the note. We take a short detour to compute the Weyl groups
associated to the subgroups of G in section 3. Finally, we discuss the
topology of Xfull in section 4.

We adopt the method in [4] to identify Xfull. We go through some of
the arguments there in the present note to be relatively self-contained.

1. Notation

It is well-known that the Weyl group of Sp(2) is

W = D8 = ⟨r, s|r4 = s2 = 1⟩.
We denote the maximal torus of Sp(2) by T . Let the normalizer of T
in Sp(2) be G, then we have the short exact sequence

1 T G W 1.π

We call a subgroup H ⊂ G full if π(H) =W .

1.1. The group Sp(2). The division ring of quaternions is denoted H.
The vector space H2 over H has the standard symplectic form given by
the formula 〈(

h1
h2

)
,

(
k1
k2

)〉
= h1k1 + h2k2.

where h1, h2, k1, k2 ∈ H and k1 means the quaternion conjugate of k1.
The group Sp(2) is the subgroup of invertible H-linear maps H2 → H2

that preserve the standard symplectic form.
If we restrict the scalar multiplication on H2 to C, we may identify

H2 with the C-vector space C4 = C2 ⊕ C2j. The identification we are
making is explicitly given by(

a1 + b1i+ c1j + d1k

a2 + b2i+ c2j + d2k

)
∈ H2 ↔


a1 + b1i
a2 + b2i
c1 + d1i
c2 + d2i

 ∈ C4.

As the standard symplectic form on H2 correspond to the standard
Hermitian form for C4 under the above identification, the maps in
Sp(2) can be now be written as 4× 4 unitary matrices. From now on,
by Sp(2), we shall mean its image under the embedding into U(4).

The maximal torus of Sp(2) is simply

T =



z 0 0 0
0 w 0 0
0 0 z 0
0 0 0 w

 : z, w ∈ C, |z| = |w| = 1


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1.2. W -modules. We choose a section σ : W → G of π by letting

σ(r) =


0 0 0 1
−1 0 0 0
0 −1 0 0
0 0 −1 0

 , σ(s) =


1 0 0 0
0 0 0 1
0 0 1 0
0 −1 0 0


and letting σ(risj) = σ(r)iσ(s)j for 0 ≤ i ≤ 3, 0 ≤ j ≤ 1. The section
σ gives rise to a right action of W on T defined as tw = σ(w)−1tσ(w).
This makes T into a right W -module.

Remark 1. The W -action on T is typically defined by observing that
the conjugation action of G on T descends to an action of W . In other
words, it does not matter how we lift elements of W to G to act on
T . In particular, we may pick any other section τ and we would have
τ(w)−1tτ(w) = σ(w)−1tσ(w). This will be used later.

We chose a specific section σ only for concreteness. If one unravels
the proof that the Weyl group of Sp(2) is D8, the section σ should be
the obvious one to pick. The reader may forget about the section σ if
he wishes.

Given a full subgroup H ⊂ G, we can fit it into a commutative
diagram

(∗)
1 S H W 1

1 T G W 1π

where S is a subgroup of T and both rows are exact. The commutative
diagram also indicates that the W -action on T restricts to a W -action
on S. This means that we only have to care about the W -invariant
subgroups of T . Moreover, for each full subgroup H of G, we can pick
some section τ : W → H of π : H → W , which is also a section of
π : G→ W under the subgroup inclusion H ↪→ G. Thus, we may write
H in the standard form H = H(S, τ) = {sτ(w) : s ∈ S,w ∈ W} .

The problem of classifying conjugacy classes of full subgroups of G
reduces to the following questions:

(1) For which W -submodule S of T is there a subgroup H(S, τ)?
(2) If H(S, τ) does exist for a particular S, how many conjugacy

classes are there for this S?

Group cohomology gives a good framework to think about and an-
swer these questions. We now bring in Pontrjagin duality because it is
a nice way to organize the W -submodules of T . This also prepares us
for the group cohomology calculations later.
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We will work with T additively, so we use the identification T ∼=
(R/Z)2 from now on. Let S1 = R/Z be the circle group. For each
right W -submodule S ⊂ T , we can give the Pontrjagin dual S∗ =
Hom(S, S1) a left W -module structure by the action wf(t) = f(tw) for
each f ∈ S∗, w ∈ W . Let ΛS = ker(T ∗ → S∗) where the map T ∗ → S∗

is induced by the inclusion S ↪→ T .
As an example, take the trivial submodule 0 of T , then Λ0 = T ∗ can

be identified with Z2, where elements of Z2 are considered as column
vectors. The group GL2(Z) has a left action on Z2 by multiplication.
The W -module structure on Λ0 is then given by the map ρ : W →
GL2(Z) that sends

r 7→
(
0 −1
1 0

)
, s 7→

(
1 0
0 −1

)
.

Proposition 1.1. The W -submodules of Λ0 are given below.

(1) The lattice ΛS
I (m) =

〈(
m
0

)
,

(
0
m

)〉
,m ≥ 1.

(2) The lattice ΛS
II(m) =

〈(
m
−m

)
,

(
m
m

)〉
,m ≥ 1.

(3) The trivial W -submodule 0.

Proof. The proof is completely routine. Any subgroup of Λ0 is free
abelian of rank at most 2. The rank 0 W -submodule is obviously
trivial and there are no rank 1 submodules because it has to be stable
under left action by r ∈ W .

Note that ΛS
I (m) and ΛS

II(m) are W -submodules of Λ0. We show
that any W -submodule Λ ⊂ Λ0 is either ΛS

I (m) or ΛS
II(m). There is a

vector (p, q) ̸= 0 in Λ with the minimum length. We claim that (p, q)
together with r(p, q) = (−q, p) forms a basis for Λ.

They are linearly independent over Z because they are linearly inde-
pendent over R by checking a determinant. Any vector (k, l) ∈ Λ0 \ Λ
must be within

√
2(p2 + q2)/2 of a point in ⟨(p, q), (−q, p)⟩, so Λ =

⟨(p, q), (−q, p)⟩ by the minimality of (p, q).
Now we know (p,−q) = s(p, q) ∈ ⟨(p, q), (−q, p)⟩. By solving an

appropriate 2 × 2 linear system, we find that (p2 − q2)/(p2 + q2) ∈ Z.
This means p = 0, q = 0 or |p| = |q|, ending the proof. □

2. Group cohomology calculations

We first review some basic facts from group cohomology. The mate-
rial is based on [4, §3]. Using the lattice dual functor and a Künneth
formula, we compute the relevant cohomology groups and describe the
set underlying Xfull.
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2.1. Low-dimensional cohomology. If M is a W -module, we let
C∗(W ;M) be the cochain complex obtained by applying HomW (−,M)
to the bar resolution of Z over ZW . When we speak of cocycles,
coboundaries and differentials, these will come from C∗(W ;M).

Recall that for a section τ : W → G, the factor set of τ is the function
fτ : W ×W → T defined by the formula fτ (v, w) = τ(vw)−1τ(v)τ(w)
for each pair (v, w) ∈ W ×W . The factor set fτ is a 2-cocycle repre-
senting the extension class ϵ(G) in H2(W ;T ).

Here is how one can classify conjugacy classes of the full subgroups
of G. For each W -submodule of S, we have a short exact sequence

0 S T T/S 0.

This induces a long exact sequence in group cohomology. The part
that interests us is the following five-term exact sequence

H1(W ;T ) H1(W ;T/S) H2(W ;S) H2(W ;T ) H2(W ;T/S).

Proposition 2.1 ([4], lemma 3.3). For each S, there is a section τ :
W → G giving a full subgroup H(S, τ) fitting into the diagram

(∗)
1 S H W 1

1 T G W 1π

if and only if ϵ(G) lifts to H2(W ;S).

We make a simple calculation first.

Lemma 2.2 ([4], lemma 3.2). Take a section τ : W → G and a
function g :W → T . Then fτg = fτδg.

The section τg is defined by pointwise multiplication. The δ is the
differential in the cochain complex obtained from the bar resolution.
We could also write the formula in additive notation since the values
are in T . In additive notation, fτg = fτ + δg.

Proof. Take v, w ∈W . Note that by definition δg(v, w) = g(v)wg(vw)−1g(w).
We calculate

fτg(v, w) = g(vw)−1τ(vw)−1τ(v)g(v)τ(w)g(w)

= g(vw)−1τ(vw)−1τ(v)τ(w)g(v)wg(w)

= g(vw)−1fτ (v, w)g(v)
wg(w).

As everything in the last line is in T , which means they commute, we
have fτg(v, w) = fτ (v, w)δg(v, w) as needed. □
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Proof of 2.1. If there is a section τ giving a full subgroup H(S, τ), then
the factor set fτ : W ×W → T actually takes values in S, so ϵ(G) lifts.

Conversely, if ϵ(G) inH2(W ;T ) lifts toH2(W ;S), there is a 2-cocycle
z : W ×W → S representing the lift. Then by the inclusion of S into
T , we can think of z as a 2-cocycle representing ϵ(G) in H2(W ;T ). We
choose any section τ so that fτ is a 2-cocycle representing ϵ(G).

The 2-cocycle z−fτ is a 2-coboundary δg. We see that z = fτ+δg =
fτg, so we have a subgroup H(S, τg) fitting into the diagram (∗) as
needed. □

Proposition 2.3 ([4], lemma 3.3). Suppose there is a section τ : W →
G giving a subgroup H(S, τ) for a given S, the number of conjugacy
classes for S is exactly the cardinality of H1(W ;T/S).

Again, we need a couple of calculational lemmas first.

Lemma 2.4. Two full subgroups H(S, τ) and H(S, τ ′) are G-conjugate
if and only if they are T -conjugate.

Proof. One way is obvious. Suppose that g−1H(S, τ)g = H(S, τ ′). As
τ is a section, we can write g = τ(w)t for some w ∈ W and t ∈ T .
Note the order reversal from the typical order that we used. Then
t−1H(S, τ)t = t−1τ(w)−1H(S, τ)τ(w)t = g−1H(S, τ)g = H(S, τ ′). □

Lemma 2.5 ([4], lemma 3.2). For any t ∈ T , tH(S, τ)t−1 = H(S, τδt).

To be clear, the section τδt is obtained by pointwise multiplication
of τ with the 1-coboundary δt.

Proof. Let s ∈ S and w ∈ W . Note that by definition, δt(w) =
τ(w)−1tτ(w)t−1. The lemma follows from the calculation

tsτ(w)t−1 = stτ(w)t−1 = sτ(w)τ(w)−1tτ(w)t−1 = sτ(w)δt(w).

□

Lemma 2.6 ([4], lemma 4.1). If g : W → T is a function, then
H(S, τ) = H(S, τg) if and only if the values of g are actually in S.

This is self-evident. The collection of all full subgroups of G is de-
noted by Sub(G)full. The notation will be reintroduced in section 4.

Proof of 2.3. Let us fix some section τ0 so that we have a subgroup
H(S, τ0). We have an onto map κ : C1(W ;T ) → Sub(G)full that sends
g to H(S, τ0g). By lemma 2.6, κ induces a bijection C1(W ;T/S) →
Sub(G)full. Then by lemma 2.4 and lemma 2.5, κ induces a bijection
H1(W ;T/S) → Sub(G)full/G. □
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2.2. Lattice dual. The Pontrjagin duality functor converts questions
about mod-W (T ) to questions about W -mod(Λ0). The latter category
is nicer because we only need to do linear algebra. However, Pontrja-
gin duality is contravariant, so we cannot use it in group cohomology
calculations. To get a covariant functor, we use the lattice dual functor
(−)∨ = Hom(−,Z).

For each W -submodule ΛS of Λ0, we define ΛS = (ΛS)∨. From the
left W -module structure of ΛS, we obtain a right W -module structure
on ΛS by setting θw(f) = θ(wf) for each θ ∈ ΛS and each w ∈W . The
W -module structure of ΛS can be described as follows.

Proposition 2.7. As W -modules, ΛS
∼= ΛS.

Proof. If ΛS = 0, there is nothing to prove. With that out of the way,
there are two cases to deal with. First, consider the W -module ΛS

I (m)
and its dual ΛS,I(m) = ΛS

I (m)∨. Consider the vectors

e1 =

(
m
0

)
, e2 =

(
0
m

)
, e∨1 =

(
1
m

0
)
, e∨2 =

(
0 1

m

)
.

The vectors e1, e2 form an ordered basis for the abelian group ΛS
I (m).

Similarly, e∨1 , e
∨
2 forms an ordered basis for ΛS,I(m). We have an iso-

morphism ϕ : ΛS
I (m) → ΛS,I(m) of abelian groups by sending e1, e2 to

e∨1 , e
∨
2 respectively. Then one can check that ϕ is in factW -equivariant,

so ϕ is an isomorphism of W -modules.
For the W -modules ΛS

II(m) and ΛS,II(m), we have the ordered basis
{f1, f2} and {f∨

1 , f
∨
2 } respectively, where

f1 =

(
m
−m

)
, f2 =

(
m
m

)
, f∨

1 =
(

1
2m

− 1
2m

)
, f∨

2 =
(

1
2m

1
2m

)
.

Similarly to before, we can check that the map ψ : ΛS
II(m) → ΛS,II(m)

sending f1, f2 to f∨
1 , f

∨
2 respectively is a W -module isomorphism. □

A perhaps subtle point is that although ΛS
I (m) and ΛS

II(m) are iso-
morphic as abelian groups, they are not isomorphic as W -modules.
They are, however, related by restriction of scalars.

Consider the automorphism of D8 defined by α(r) = r, α(s) = r3s.
This gives an automorphism α of ZD8. This automorphism gives a
functor Res : W -mod→ W -mod sending a W -module M to the W -
moduleM ′ whereM ′ is the same asM as an abelian group, but w ·m =
α(w)m for each m ∈M ′.

Proposition 2.8. We have ResΛS
II(m) ∼= ΛS

I (m) as W -modules.
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Proof. We continue using the notation from 2.7. Write the scalar mul-
tiplication in ResΛS

II(m) as ·, we have

r · f1 = rf1 = f2, r · f2 = rf2 = −f1
and

s · f1 = r3sf1 = f1, s · f2 = r3sf2 = −f2.
Thus, we have aW -module isomorphism ResΛS

II(m) ∼= ΛS
I (m) by send-

ing f1, f2 to e1, e2 respectively. □

Let us relate this new construction to the five-term exact sequence we
gave earlier. We have a commutative diagram of short exact sequences

0 Λ0 R2 T 0

0 ΛS R2 T/S 0

As multiplying by |W | = 8 is an isomorphism of R → R, by using the
transfer map [2, p. 83], we obtain H i(W ;R) = 0 for i ≥ 1. Looking at
the long exact sequence for the two rows and applying naturality, we
obtain the commutative squares

H i(W ;T ) H i(W ;T/S)

H i+1(W ; Λ0) H i+1(W ; ΛS)

≃ ≃

Now, the five-term exact sequence looks like

H1(W ;T ) H1(W ;T/S) H2(W ;S) H2(W ;T ) H2(W ;T/S)

H2(W ; Λ0) H2(W ; ΛS) H3(W ; Λ0) H3(W ; ΛS).

≃ ≃ ≃ ≃

The main tool of calculation is the following Künneth formula [5].

Proposition 2.9. Let G,G′ be finite groups and M,M ′ be a G-module
and a G′-module respectively. If M,M ′ are, as modules over Z, both
finitely generated and free, then we have a short exact sequence

0 →
⊕

p+q=n

Hp(G;M)⊗Hq(G′;M ′) → Hn(G×G′;M ⊗M ′)

→
⊕

p+q=n+1

TorZ1 (H
p(G;M), Hq(G′;M ′)) → 0.
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Proposition 2.10. For n ≥ 0, we have

Hn(W ; ΛS
I (m)) =

{
(Z/2)i if n = 2i;

(Z/2)i+1 if n = 2i+ 1.

Moreover, Hn(W ; ΛS
II(m))) ∼= Hn(W ; ΛS

I (m)) as abelian groups.

Proof. Since restriction of scalars is exact, we obtain the isomorphism
of abelian groups Hn(W ; ΛS

II(m))) ∼= Hn(W ; ΛS
I (m)).

Now we compute Hn(W ; ΛS
I (m)) by building it up from simpler

pieces. It is well-known that for p, q ≥ 0, we have

Hp(C2;Z) =


Z p = 0

0 p ̸= 0 odd

Z/2 p ̸= 0 even

Hp(C2; Z̃) =

{
0 p even

Z/2 p odd

where Z̃ is the unique nontrivial C2-module with the underlying abelian
group being Z. Using the Künneth formula given above, we find that

Hn(C2 × C2;Z⊗ Z̃) =

{
(Z/2)i if n = 2i;

(Z/2)i+1 if n = 2i+ 1.

Finally, observe that ΛS
I (m) ∼= CoindW

C2×C2
Z ⊗ Z̃ as W -modules. The

proposition now follows from Shapiro’s lemma. □

Let A =
{
(0, 0), (1

2
, 1
2
)
}
be the unique W -submodule of order 2 in T .

Proposition 2.11. There is a subgroup H fitting into the commutative
diagram

(∗)
1 S H W 1

1 T G W 1π

if and only if A ⊂ S.

Proof. Consider the section τ : W → G defined by setting

τ(r) =


0 0 0 i
i 0 0 0
0 −i 0 0
0 0 −i 0

 , τ(s) =


i 0 0 0
0 0 0 1
0 0 −i 0
0 −1 0 0


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and τ(risj) = τ(r)iτ(s)j for 0 ≤ i ≤ 3 and 0 ≤ i ≤ 1. We have a
commutative diagram

1 A K W 1

1 T G W 1π

where K is the subgroup of order 16 generated by τ(r) and τ(s) in G.
By explicit computation, the factor set fτ takes values in A for v, w ∈

W . Moreover, fτ attains all values of A. As G is not a split extension
of W by T , the proposition is established. □

Corollary. The conjugacy classes of full subgroups of G are given by
the following table. #Conj is short for the number of conjugacy classes.

Lattice 0 ΛS
I (m), m odd ΛS

I (m), m even ΛS
II(m)

#Conj 1 0 2 2

3. Weyl groups of subgroups

We compute the Weyl group of full subgroups of G in this section
using linear algebra. The plan is to prove a formula for the Weyl group
first and then proceed to examine a bit more closely the Pontrjagin
duality functor to exploit the formula. The content is based on [4, §4],
but we give more or less complete details here.

The Weyl groupWG(H) of a subgroup H ⊂ G is defined as the group
NG(H)/H, where NG(H) is the normalizer of H in G.1

For each subgroup S ⊂ T , let S+ = {t ∈ T : tw ∈ S for all w ∈W}.
Then S+ is also a subgroup of T and we shall denote ΛS+

by ΛS
+. We

first describe the normalizer in terms of S+.

Proposition 3.1 ([4], lemma 4.1). For a full subgroup H = H(S, τ),
we have the formula NG(H) = H(S+, τ).

Proof. First, we do have a subgroup H(S+, τ) because the factor set
fτ takes values in S ⊂ S+ by assumption.

Any g ∈ G can be written as g = τ(w)t for some w ∈ W and
t ∈ T . Then by lemma 2.5 and lemma 2.6, g−1H(S, τ)g ⊂ H(S, τ) is
equivalent to saying δt takes value in S. In other words, g ∈ NG(H) if
and only if t ∈ S+, so NG(H) = H(S+, τ). □

Now we give an easy formula for determining WG(H).

1Our terminology is standard in equivariant homotopy theory.
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Proposition 3.2 ([4], p. 10). For a full subgroup H = H(S, τ), we
have the formula WG(H) ∼= S+/S ∼= (ΛS/ΛS

+)
∗.

Proof. Consider the composition S+ ↪→ H(S+, τ) = NG(H) → NG(H)/H.
If tτ(w) is in the kernel of the composite with t ∈ S+ and w ∈ W , then
tτ(w) = sτ(v) for some s ∈ S and v ∈ W . Applying π to both sides
shows v = w and so t = s ∈ S. Thus, WG(H) ∼= S+/S.
The isomorphism S+/S ∼= ΛS/ΛS

+ comes from Pontrjagin duality.
Since Pontrjagin duality is exact, by applying (−)∗ to the short exact
sequence

0 S T T/S 0.

we get the short exact sequence

0 ΛS T ∗ S∗ 0.

Similarly, we have (T/S+)∗ = ΛS
+. Applying the Pontrjagin duality

functor once more to the short exact sequence

0 S S+ S+/S 0

and using one of the isomorphism theorems, we get (S+/S)∗ ∼= ΛS/ΛS
+.

By the double duality isomorphism, we have S+/S∗ ∼= (ΛS/ΛS
+)

∗. □

As the Pontrjagin dual of a finite abelian group is itself, when the
index [ΛS : ΛS

+] is finite, we have the formula WG(H) ∼= ΛS/ΛS
+.

3.1. Translating between lattices and subgroups. There are two
ways to calculate the Weyl groups from proposition 3.2. As we have
been working with lattices via Pontrjagin duality so far, we first need
a standard fact about Pontrjagin duality to help us translate between
lattices and the subgroups of T . Then we describe how to calculate
S+ and ΛS

+ from S and ΛS respectively, so we may compute the Weyl
groups either way.

Proposition 3.3. Given a (closed) subgroup S of T and a t ∈ T \ S,
there is some f ∈ S∗ such that f(s) = 0 for every s ∈ S but f(t) ̸= 0.

A proof of proposition 3.3 is given in [7, p. 75].
Under the double duality isomorphism, we can identify s ∈ S with

a map s∗∗ : Λ0 → S1 sending f ∈ Λ0 to f(s) ∈ S1.

Proposition 3.4. We have S = ker((Λ0)∗ → (ΛS)∗) for subgroups S
of T .

Proof. The inclusion S ⊂ ker((Λ0)∗ → (ΛS)∗) follows from the def-
inition of Λ0 and ΛS. The reverse containment is given by proposi-
tion 3.3. □
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Here is a more conceptual way of thinking about the situation. Let
mod-W (T ) and W -mod(Λ0) be the category of right W -submodules
of T and the category of left W -submodules of Λ0 respetively. The
contravariant functor Λ− : mod-W (T ) → W -mod(Λ0) sending S →
ΛS is an anti-isomorphism of categories by proposition 3.4.

We now give an explicit description of mod-W (T ) like we have done
for W -mod(Λ0) in proposition 1.1.

Proposition 3.5. The W -submodules of T are given below.

(1) The W -submodule

SI(m) =

{(
k

m
,
l

m

)
: 0 ≤ k < m, 0 ≤ l < m

}
for ΛS

I (m).
(2) The W -submodule

SII(m) =

{(
k

2m
,
l

m
+

k

2m

)
: 0 ≤ k < 2m, 0 ≤ l < m

}
for ΛS

II(m).
(3) The W -module T for 0.

Proof. We prove the claim for ΛS
I (m). The proof for ΛS

II(m) is similar.
Since S ∼= (Λ0/ΛS)∗ and the index [Λ0 : ΛS] = m2, we know that
the subgroup S for ΛI(m) has m2 elements. As SI(m) consists of m2

elements of T that vanishes on ΛS
I (m), the subgroup corresponding to

ΛS
I (m) must be SI(m). □

Let Sr = {t ∈ T : trt−1 ∈ S} and Ss = {s ∈ T : tst−1 ∈ S}. They are
subgroups of T .

Proposition 3.6. We have the formula S+ = Sr ∩ Ss.

Proof. The containment S+ ⊂ Sr∩Ss is obvious. Suppose now t ∈ Sr∩
Ss and v, w ∈ W . Then tvwt−1 = (tvt−1)wtwt−1 shows S+ ⊃ Sr∩Ss. □

The formula also works in more general situations where W is not
necessarily D8 with the obvious modifications. In principle, one can
calculate the Weyl groups now and it is not a difficult calculation. We
will now describe the second approach via lattices instead of working
with the subgroups directly, which is slightly nicer.

Let ΛS
r = ΛSr and ΛS

s = ΛSs .

Proposition 3.7. We have the formula ΛS
+ = ⟨ΛS

r ,Λ
S
s ⟩, which is the

abelian group generated by ΛS
r and ΛS

s .
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Proof. This follows from proposition 3.6 and the fact Λ− : mod-W (T ) →
W -mod(Λ0) is an anti-isomorphism. □

Let Λ0 = Z2. We pick a basis

λ1 =

(
x1
y1

)
, λ2 =

(
x2
y2

)
for ΛS. Let X = (λ1 λ2) be the 2× 2 matrix with λ1, λ2 as columns.
We shall represent elements of S = S∗∗ as row vectors and write the
same row vector for both s and s∗∗. For t = (a b) ∈ T = (R/Z)2, we
have t ∈ S if and only if tX = 0 ∈ (R/Z)2. Alternatively, we could
require that tX ∈ Z2.

We can now describe ΛS
r and ΛS

s using linear algebra. Consider the
matrices

Mr = ρ(r)− I2 =

(
−1 −1

1 −1

)
, Ms = ρ(s)− I2 =

(
0 0

0 −2

)
.

Proposition 3.8 ([4], p. 12). We have the equalities ΛS
r =MrΛ

S and
ΛS

s =MsΛ
S.

We need a linear algebra lemma. For every u, v ∈ Rm, we write u · v
for their dot product. If S ⊂ Rm, we define u · S = {u · v : v ∈ S}.
Lemma 3.9. Let A,B ⊂ Zm. The condition ⟨A⟩Z = ⟨B⟩Z is equivalent
to the condition that for every u ∈ R1×m, we have u ·A ⊂ Z if and only
if u ·B ⊂ Z. By ⟨A⟩Z, we mean the Z-span of A.

The proof is straightforward linear algebra. The details are given in
the following note [6].

Proof of 3.8. We will only show that ΛS
r =MrΛ

S.
Pick any basis A = {µ1, µ2} of ΛS

r . By proposition 3.4, tA ⊂ Z if
and only if t ∈ Sr. For any row vector v ∈ Z2 we have tA ⊂ Z if and
only if (t+ v)A ⊂ Z.

By the definition of Sr, an element t = (a b) ∈ T is in Sr if and
only if tρ(r) − t vanishes on ΛS. Equivalently, t ∈ Sr if and only
if tMrX ∈ Z2. Let B = {Mrλ1,Mrλ2}. Again, for any row vector
v ∈ Z2, we have tB ⊂ Z if and only if (t+ v)B ⊂ Z.

By lemma 3.9, we have ΛS
r = ⟨A⟩Z = ⟨B⟩Z =MrΛ

S. □

Proposition 3.10. For each ΛS ̸= 0, we have WG(H) = ΛS/ΛS
+
∼= C2.

Proof. Since MsΛ
S
I (m) ⊂ MrΛ

S
I (m) = ΛS

II(m), the lattice ΛS
I,+(m)

is actually ΛS
II(m). Similarly, MsΛ

S
II(m) ⊂ MrΛ

S
II(m) = ΛS

I (2m) =
ΛS

II,+(m). Note that [ΛS
I (m) : ΛS

II(m)] = [ΛS
II(m) : ΛS

I (2m)] = 2, so we
get WG(H) ∼= C2 for all subgroups H(S, τ). □
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4. Topology

In the first half of this section, we define the topology on Xfull. Then
we make explicit calculations in the second half to determine a neigh-
borhood basis at each point of Xfull.

We can endow T = (R/Z)2 with the T -bi-invariant metric dT (t1, t2) =
min

∥∥t̃1 − t̃2
∥∥
∞ where t̃1, t̃2 varies over all possible lifts of t1, t2 to R2.

We can extend it to a G-bi-invariant metric d on G as follows.
Write G =

∐
w∈W σ(w)T . Define

d(σ(w)t1, σ(v)t2) =

{
dT (t1, t2) if v = w;

5 if v ̸= w.
.

We picked the number 5 only because 5 > d(t1, t2) for each pair
t1, t2 ∈ T . One can then check that d satisfies the triangle inequality
and that it is G-bi-invariant by using the fact T is normal in G.

Let us denote the collection of closed (hence compact) subsets of G
by K(G). The Hausdorff distance dH associated to d is defined as

dH(K,L) = max

(
sup
x∈K

d(x, L), sup
y∈L

d(K, y)

)
for each K,L ∈ K(G). This makes K(G) into a compact metric space.
The collection of closed subgroups Sub(G) of G is then a metric sub-
space of K(G).

The underlying topological space of K(G) has the Vietoris topology,
which only depends on the topology of G, not on the metric we chose [8,
p. 67]. We could have started with a different metric on G, not even
necessarily a bi-invariant one and we would have still obtained the same
topological space Sub(G).

We define the topological space Sub(T ) for the maximal torus in a
similar fashion. The collection of W -invariant subgroups W -Sub(T ),
which is the set of objects of mod-W (T ), can be given the subspace
topology from Sub(T ).

Let X = Sub(G)/G be the collection of conjugacy classes of G.
We give it the quotient topology under the canonical map Sub(G) →
Sub(G)/G. We denote by Sub(G)full the subspace of Sub(G) consist-
ing of full subgroups. Similarly, Xfull is the subspace of X consisting of
conjugacy classes coming from full subgroups.

There is a continuous map Sub(G)full → W -Sub(T ) sending a sub-
group H(S, τ) to S. This map factors through the canonical map
Sub(G)full → Xfull. Here is a commutative diagram summarizing the
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situation.
Sub(G)full Xfull

W -Sub(T )

p

q
q

Now we discuss some point-set topology properties of the spaces and
maps we have in the diagram above. Most of these are special cases of
basic results in transformation groups and the proofs are routine. For
brevity, we shall omit most proofs and point to suitable references.

Proposition 4.1 ([3], p. 108). The conjugation action G×Sub(G)full →
Sub(G)full is continuous.

Proposition 4.2 ([1], p. 38). The space Xfull is Hausdorff.

Proposition 4.3. The map p is open.

Proof. The proposition follows from the equality U =
⋃

g∈G g
−1Ug for

any open set U ⊂ Sub(G)full. □

We shall now describe the topology of Xfull by giving a neighborhood
basis at each point. We need the fundamental result of Montgomery
and Zippin.

Proposition 4.4 (Montgomery-Zippin). Consider a compact Lie group
L, a closed subgroup H of L and a neighborhood U of the identity e.
Then there is a neighborhood W ⊂ U of e such that for each subgroup
K ⊂WH there is a u ∈ U so that u−1Ku ⊂ H.

The proof is given in [1, p. 87]. To clarify, the set WH is obtained
by multiplying elements of W and H, so it should be thought of as a
“W -thickening” of H.

Lemma 4.5 ([4], lemma 5.3). If S ⊂ T is a subgroup, we can find a
neighborhood of S consisting only of subgroups S ′ ⊂ S.

Proof. Since T is itself a neighborhood of the identity in G, the lemma
holds by Montgometry-Zippin and the fact that T is abelian. □

Lemma 4.6. For a full subgroup H(S, τ) of G, dH(H,G) = dH(S, T ).

Proof. Note that H(S, τ) ⊂ G implies dH(H,G) = supg∈G d(H, g). Fix
a point g ∈ G. There is a point h ∈ H lying in the same component as
g such that d(h, g) = d(H, g) since the distance between components is
much larger than the distance between points in the same component.

By the bi-invariance of d, we can assume that g ∈ T and we have
d(H, g) = d(S, g). This proves the lemma because d(S, T ) = supg∈T d(S, g).

□
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Now we give a quantitative result on distance.

Lemma 4.7. d(SI(m), T ) = d(SII(m), T ) = 1
2m

.

Proof. The kernel of R2 → T/SI(m) is Z[ 1
m
]2. By the definition of

∥·∥∞, any lift of t ∈ T is within 1
2m

of Z[ 1
m
]2 and this distance can be

achieved.
Similarly, the kernel of R2 → T/SII(m) is Z[ 1

m
]2 ∪ ( 1

2m
, 1
2m

) + Z[ 1
m
]2.

The equality d(SII(m), T ) = 1
2m

follows. □

We define for each integer n ≥ 1 a set Un consisting of all conjugacy
classes [H(S, τ)] where S = SI(m) or S = SII(m) with m ≥ n.

Proposition 4.8. (1) For each [H(S, τ)] ∈ Xfull where S ̸= T , the
collection N ([H(S, τ)]) = {{[H(S, τ)]}} is a neighborhood basis.

(2) For the point [G], the collection N ([G]) = {Un : n ≥ 0} is a
neighborhood basis.

Proof. Take a subgroup S ̸= T in W -Sub(T ). By lemma 4.5, it has a
neighborhood consisting of S ′ ⊂ S. If S ′ ̸= S, d(S ′, S) > 0 because
S ′ is finite. There are only finitely many subgroups S ′ of S, so the
singleton {S} is open in W -Sub(T ).

Suppose point [H1] ∈ Xfull maps to S ∈ W -Sub(T ). Then q−1({S})
consists of two points in Xfull, one of them being [H1]. Let us call
the other [H2]. Since Xfull is Hausdorff, we can find disjoint open set
[H1] ∈ U and [H2] ∈ V . Now {[H]} = U ∩ {[H1], [H2]} is open, so we
have shown (1).

The inverse image of the point [G] ∈ Xfull consists of the point
G ∈ Sub(G)full alone. Take a sequence of real numbers αm such that
1
2
< α1 < 1 and 1

2(m+1)
< αm+1 < 1

2m
. The open balls Bαn(G) =

{H(S, τ) : d(S, T ) < αn} form a neighborhood basis at G. Since Un =
p (Bαn(G)) and p is an open map, the collection N ([G]) is a neighbor-
hood basis for [G].

□
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