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Introduction

Consider the problem of distinguishing topological spaces. Take the unit circle
S1 ⊂ C and the unit sphere S2 ⊂ R3 as examples. They certainly look different.
However, how do we know that S1 and S2 are not homeomorphic?

Algebraic topology approaches this problem by systematically assigning “al-
gebraic invariants” to topological spaces. These invariants are objects that en-
code certain kind of information about the space. Looking at invariants brings
into focus the relevant properties that make topological spaces different. In sec-
tion 1, we introduce the formal framework for discussing algebraic invariants.

For instance, given a topological space X, a basic invariant we can look at is
the fundamental group π1(X,x0) based at a point x0 ∈ X. The group π1(X,x0)
captures information about loops starting and ending at x0. Our goal is to work
out π1(S

1, 1), which is arguably the simplest nontrivial example.
Classically, π1(S

1, 1) is calculated using covering spaces [7, pp. 29-31]. In
1960s, Brown [1] made a curious discovery that led to an algebraic approach
via the van Kampen theorem. This requires using a slightly different invariant:
fundamental groupoids. The construction of these algebraic invariants and the
van Kampen theorem are the subjects of section 2.1 and section 2.2 respectively.
Finally, we complete our promise and calculate π1(S

1, 1) in section 2.3.

1 Categorical Preliminaries

The language of categories and functors gives us a way to formalize the idea
of algebraic invariants. We can discuss formal properties and manipulations of
algebraic invariants thanks to this language. In section 2.1, we shall be building
algebraic models of topological spaces as categories.

Most of the definitions and results are standard [10].

1.1 Categories

Let us start off with the definition of a category and then we will see some
examples of categories.

A category C consists of a collection of objects and for every pair of objects
a collection of morphisms (or maps) satisfying some composition rules. The
collection of objects in C is denoted Ob C. If x, y ∈ Ob C, the collection of
morphisms from x to y is denoted C(x, y). An alternative notation for C(x, y) is
HomC(x, y) which is why we refer to it as the hom-set. For every f ∈ C(x, y),
the domain and codomain of f are x and y respectively. They are also part
of the data of a morphism, which means two morphisms cannot be equal if their
domains or codomains do not match. We require the following:

• for every x, y, z ∈ Ob C, there is a map ◦ : C(x, y)× C(y, z)→ C(x, z) sending
the pair (f, g) ∈ C(x, y) × C(y, z) to a morphism g ◦ f ∈ C(x, z). The map ◦
is called composition. We write gf for g ◦ f when no confusion will arise.
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• given any three morphisms f, g, h such that hg and gf are both defined, we
have (hg)f = h(gf). In other words, composition is associative.

• for each x ∈ Ob C, we have an identity morphism idx ∈ C(x, x) satisfying

f ◦ idx = f and idx ◦ g = g

whenever y ∈ Ob(C), f ∈ C(x, y) and g ∈ C(y, x).

Some comments are in order. We use “collection” instead of “sets” because
we do not require Ob C or C(x, y) to be sets. It can be confusing because a “hom-
set” may not be a set in our convention. If all hom-sets in a category are sets,
we say the category is locally small. In [8], local smallness is implicitly assumed
in the definition of a category. The foundational issues that come with sizes are
a topic in itself and there are different approaches to setting a foundation for
categories [11]. Fortunately these issues do not crop up in our discussions, so
we shall make no more mention of them. We will use set-theoretic notations
such as “x ∈ Ob C” and “Ob C ∪ObD” with no qualms.

We list some examples of categories in the following table.

Name of Category Objects Morphisms
Top topological spaces continuous functions
Set sets set functions
Grp groups group homomorphisms

Let Mor C be the collection of all morphisms in a category C, i.e. {f ∈
C(x, y) : x, y ∈ C}. We say a category C is small if Mor C forms a set. This
implies Ob C forms a set since we can identify objects with their identity mor-
phisms. In fact, categories can be defined in an object-free fashion [6, p. 5].

There are a few kinds of categories that we will use as indexing categories.
An indexing category is like an indexing set, except it has morphisms, so it is a
step towards formalizing the idea of diagrams, which are pervasive in category
theory. For our purposes, an indexing category is simply a small category.

Example 1.1. A discrete category is a category with only identity mor-
phisms, so it contains no more data than its underlying collection of objects.

Example 1.2. A poset (P,≤) is a small category with the elements of the poset
as objects and a unique morphism x→ y between x, y ∈ P if and only if x ≤ y.

1.2 Functors

Given two categories C and D, a functor F : C → D consists of the following:

• a map Ob C → ObD that sends each c ∈ Ob C to some Fc ∈ ObD,

• for each pair c, c′ ∈ Ob C a map C(c, c′)→ D(Fc, Fc′) sending each f ∈ C(c, c′)
to some F (f) = Ff ∈ D(Fc, Fc′),

preserving the structure of C in the following sense:
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• ∀c ∈ Ob C we have F (idc) = idFc,

• if f : c→ c′ and g : c′ → c′′ are morphisms in C, we have F (g ◦ f) = Fg ◦Ff .

Two functors are equal if they agree on objects and hom-sets of every pair
of objects. Functors are everywhere so we will see examples in due course.

An incredibly useful feature of functors is that they preserve isomorphisms.

Definition 1.1. A morphism f : c → c′ in C is an isomorphism if there is
g : c′ → c such that gf = idc and fg = idc′ . We write f : c ∼= c′ in this case.

Proposition 1.1. Let f : c→ c′ be an isomorphism in C. Then Ff : Fc→ Fc′

is an isomorphism in D.

The proposition follows from the definition of a functor [10, p. 18]. With
functors and isomorphisms introduced, we can now explain what a groupoid is.

Definition 1.2. A groupoid G is a small category in which every morphism
is an isomorphism. Groupoids with functors between them as morphisms form
a category denoted Grpd.

Example 1.3. A small discrete category is a groupoid.

Example 1.4. There is a functor B : Grp→ Grpd that sends each group G to
the groupoid BG with a single object ∗. The morphisms in the groupoid BG are
the elements of G with composition given by multiplication in the group. The
identity of the group is the identity morphism. Since every element of the group
is invertible, the category BG is indeed a groupoid. A group homomorphism
G → H is exactly the same as a functor BG → BH. Therefore, any group G
can be regarded as a groupoid (and therefore a category!) via the functor B.

1.3 Natural Transformations

Let F,G : C → D be two functors. A natural transformation η : F ⇒ G
consists of a morphism ηc : Fc→ Gc for each object c in C such that whenever
f : c→ c′ is a morphism in C, we have the commutative diagram below.

Fc Gc

Fc′ Gc′

ηc

Ff Gf

ηc′

A alternative notation we will use for η : F ⇒ G is η : F ≃ G. The morphism
ηc at the object c is said to be the component of η at c.

Example 1.5. Let C andD be categories. The objects of the functor category
DC are functors C → D and the morphisms are natural transformations.

Definition 1.3. Two functors F,G : C → D are naturally isomorphic if they
are isomorphic as objects in the functor category DC . The natural transforma-
tion η that gives the isomorphism between the two functors is called a natural
isomorphism and we write η : F ∼= G or simply F ∼= G.
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An equivalent way to express η : F ∼= G is that each component of the
natural transformation η is an isomorphism.

Definition 1.4. A functor F : C → D is an equivalence of categories if there
is a functor G : D → C such that GF ∼= idC and FG ∼= idD. The categories C
and D are said to be equivalent if such F and G exist between them.

We give another characterization of an equivalence of categories.

Definition 1.5. Let F : C → D be a functor. It is said to be

• full if the map C(c, c′)→ D(Fc, Fc′) is surjective ∀c, c′ ∈ Ob C;

• faithful if the map C(c, c′)→ D(Fc, Fc′) is injective for ∀c, c′ ∈ Ob C;

• fully faithful if it is both full and faithful;

• essentially surjective if ∀d ∈ ObD, ∃c ∈ Ob C such that Fc ∼= d.

Proposition 1.2. A functor F : C → D is an equivalence of categories if and
only if it is fully faithful and essentially surjective.

Proof. Suppose that we have a functor F : C → D and a functor G : D → C
such that there are natural isomorphisms η : idC ∼= GF and µ : idD ∼= FG. We
show that F is fully faithful and essentially surjective.

Let c, c′ ∈ Ob C. We would like to show that C(c, c′) → D(Fc, Fc′) is in-
jective. Suppose f, g : c → c′ are morphisms such that Ff = Fg. Then
GFf = GFg and we have the following commutative diagrams

c GFc

c′ GFc′

ηc

f GFf

ηc′

c GFc

c′ GFc′

ηc

g GFf=GFg

ηc′

Thus, f = g and C(c, c′) → D(Fc, Fc′) is injective. Similarly, D(d, d′) →
D(Gd,Gd′) is injective for any d, d′ ∈ ObD.

To see the surjectivity of C(c, c′) → D(Fc, Fc′), let g : Fc → Fc′ be a
morphism. We define a morphism f = η−1

c′ ◦Gg ◦ ηc in C so that the diagram

c GFc

c′ GFc′

ηc

f Gg

ηc′

commutes by definition. Since η : idC ∼= GF is a natural isomorphism, we also
have the commutativity of the diagram

c GFc

c′ GFc′

ηc

f GFf

ηc′
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The map D(Fc, Fc′) → C(GFc,GFc′) is injective, so Ff = g. This shows
that C(c, c′) → D(Fc, Fc′) is surjective. The functor F is essentially surjective
because d ∼= FGd via µd for any d ∈ ObD. This completes one implication.

Now, suppose that F : C → D is a fully faithful, essentially surjective functor.
For this direction, we need to invoke the axiom of choice. By essential surjec-
tivity, we can choose for each d ∈ ObD an object c ∈ Ob C and an isomorphism
µd : d ∼= Fc . We define the functor G on objects by G(d) = c.

Suppose that we have another object d′ in D with the isomorphism µd′ :
d′ ∼= Fc′. Let g : d → d′ be a morphism in D. There is a morphism, namely
µd′ ◦ g ◦ µ−1

d , that makes the diagram below commute.

d Fc

d′ Fc′

µd

g µd′◦g◦µ
−1
d

µd′

Since F is a fully faithful functor, there is a unique morphism f : c → c′

such that Ff = µd′ ◦ g ◦ µ−1
d . This means that we can define G on morphisms

by Gg = f . We now need to prove that G is in fact a functor. Consider the
morphism idd in D. Then µd ◦ idd ◦ µ−1

d = idFc = F idc, so Gidd = idc = idGd.
Suppose that we have the commutative diagram

d Fc

d′ Fc′

d′′ Fc′′

µd

g µd′◦g◦µ
−1
d

µd′

g′ µd′′◦g
′◦µ−1

d′

µd′′

in D. The outer rectangle forms the commutative square

d Fc

d′′ Fc′′

µd

g′◦g µd′′◦(g
′◦g)◦µ−1

d

µd′′

which upon comparison gives G(g′ ◦ g) = Gg′ ◦Gg.
The isomorphisms µd : d → Fc = FGd form a natural isomorphism µ :

idD ∼= FG since each g : d→ d′ induces FGg = µd′ ◦ g ◦ µ−1
d by definition.

The last thing we need to prove is that we in fact have a natural isomorphism
η : idC ∼= GF . Suppose that c0 is an object of C. We need an isomorphism
ηc0 : c0 ∼= GFc0. Consider the isomorphism µFc0 : Fc0 ∼= Fc. We have a unique
morphism ηc0 : c0 → c = GFc0 since F is fully faithful.

The morphism ηc0 is an isomorphism also thanks to F being fully faithful.
Indeed, there is a unique morphism ε : Fc → Fc0 such that Fε = µ−1

Fc0
. Then

F (ε◦ηc0) = idFc0 and F (ηc0 ◦ε) = idFc show that ε◦ηc0 = idc0 and ηc0 ◦ε = idc.
We need to show that the collection of isomorphisms forms a natural iso-

morphism η : idC ∼= GF . Let f : c0 → c′0 be a morphism in C. There is a
commutative diagram
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Fc0 Fc

Fc′0 Fc′

µFc

Ff µFc′0
◦Ff◦µ−1

Fc

µFc′0

We defined GFf to be the morphism such that FGFf = µFc′0
◦Ff ◦µ−1

Fc . Since
F is fully faithful, we have a commutative square

c0 GFc

c′0 GFc′

ηc0

f GFf

ηc′0

which shows that η is natural. This completes the proof.

Definition 1.6. A subcategory D of C is a category consisting of:

• a subcollection ObD ⊂ Ob C of objects,

• a subcollection of morphism D(d, d′) ⊂ C(d, d′) for each pair d, d′ ∈ ObD,

• a composition rule that is induced by the composition rule of C.

Another way one could define a category D to be a subcategory of C is to
say that there is a faithful functor D → C that is injective on objects [10, p. 31].
This is not standard, but it captures all the data above rather succinctly.

Definition 1.7. Suppose η : F ⇒ G is a natural transformation between two
functors F,G : C → C′ and D is a subcategory of C. We write F ≃ G relD if all
components of η at objects in D are identity morphisms.

Definition 1.8. Let D be a subcategory of C and i : D → C the standard
inclusion functor. We say that D is a deformation retract of C if there is a
functor r : C → D with ir ∼= idC relD. The functor r is a deformation retraction.

A deformation retraction is a retraction in the sense that ri = idD. The
condition ir ∼= idC relD implies iri = i as functors. For any d ∈ ObD, iri(d) =
i(d) implies ri(d) = d as i is injective on objects. Similarly, i is faithful shows
ri(f) = f for any morphism f in D. The equality ri = idD implies ri ∼= idD if
we take the natural isomorphism to be the identity natural transformation.

Corollary. Let D be a subcategory of C. The standard inclusion D → C is a
deformation retraction if and only if it is fully faithful and essentially surjective.

Remark 1. We omit the proof of the corollary. It is not a direct consequence of
proposition 1.2, but rather the proof of it. We can get a deformation retraction
instead of an equivalence of categories in this case because the inclusion of a
subcategory is injective on objects. We may therefore choose the components
of the natural transformation at objects in D to be identity morphisms.
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1.4 Colimits

Let J be a small category which will serve as an indexing category. As prepa-
ration for the definition of a colimit, we formalize the idea of diagrams first.

Definition 1.9. A diagram in C is a functor from an indexing category to C.

For any object c in a category C, we have a constant functor from J → C
that sends every object in J to c and every morphism in J to idc. A constant
functor at an object c ∈ Ob C will be also denoted by c.

Definition 1.10. Let F : J → C be a diagram. A cocone under F is a natural
transformation η : F ⇒ c where c : J → C is a constant functor.

Definition 1.11. Let F : J → C be a diagram. A colimit of F is a universal
cocone λ : F ⇒ l under F if it exists. This means that whenever η : F ⇒ c, we
have the following commutative diagram.

F l

c

λ

η ∃!

A natural transformation between two constant functors is just a morphism
of the objects defining the respective functors. If two objects both give rise to
a colimit for the same diagram, these two objects must be isomorphic. This
justifies the usage of the colimit. In the diagram above, we write l = colimJ F .

Colimits provide a convenient way to express the idea of “gluing” because
an indexing category usually has some nonidentity morphisms which pose extra
conditions on the colimit.

Example 1.6. Let J be the category that has three objects and two nonidentity
morphisms • ← • → •. A pushout in C is the colimit of a diagram J → C.

2 The Van Kampen theorem

2.1 Homotopy and the fundamental groupoid

It is standard to denote the unit interval [0, 1] ⊂ R by I.

Definition 2.1. Two continuous functions f, g : X → Y are homotopic if
there is a continuous function H : X × I → Y such that H(s, 0) = f(s) and
H(s, 1) = g(s). We write H : f ≃ g and say that H is a homotopy from f to g.

Now we define the important notion of concatenation of homotopies.

Definition 2.2. Given two homotopies H,K : X×I → Y such that H|X×{1} =
K|X×{0}, their concatenation is the homotopy K ·H given by the formula

(K ·H)(s, t) =

{
H(s, 2t) if (s, t) ∈ X ×

[
0, 1

2

]
,

K(s, 2t− 1) if (s, t) ∈ X ×
[
1
2 , 1

]
.
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The concatenation of two homotopies does the first one at twice the speed
and then the second one at twice the speed. We write the first homotopy on the
right like function composition, but it is often written from left to right as well.

Definition 2.3. Let f : X → Y be continuous. We say that the homotopy
H : X × I → Y given by H(s, t) = f(s) is a constant homotopy.

Definition 2.4. Let H : X × I → Y be a homotopy. The reverse of H is the
homotopy R : X × I → Y given by R(s, t) = H(s, 1− t) for all (s, t) ∈ X × I.

The terminology “reverse” is not standard. We have the following immediate
result [3, p. 225].

Proposition 2.1. For any two topological spaces X,Y , the relation of homotopy
is an equivalence relation on the set of continuous functions from X to Y .

We can define a path in a topological space X as a homotopy p from a
continuous function x : I0 → X to a continuous function y : I0 → Y , where
I0 = {0} ⊂ R is the one-point space. We write p : x → y and say that the
path starts at x and ends at y. Concatenation of two paths, constant paths and
reverse paths are then special cases of the corresponding concept for homotopies.

We identify the function x : I0 → X with the single point x in its image. The
more general notions we defined for homotopies will still be needed in situations
where the homotopy is not a path, so it is not for the sake of abstraction.

The concatenation of paths is not associative. However, it is associative up
to homotopy. Here “homotopy” means homotopy relative to a subspace.

Definition 2.5. Let A ⊂ X be a subspace of a topological space. A homotopy
H : X × I → Y from f to g whose restriction H|A×I is a constant homotopy is
said to be a homotopy relative to A. We write H : f ≃ g relA.

Proposition 2.2. Let p : x → y, q : y → z, r : z → w be paths in X. Then
r(qp) ≃ (rq)p rel {x,w}.

We can now construct the fundamental groupoid functor Π1 : Top→ Grpd.
Given a topological space X, the objects in Π1(X) are the points in X. For

two points x, y of X, the set of morphisms is the set of paths from x to y modulo
the homotopy rel end points relation. That is, p, q : x → y represent the same
morphism between x and y if p ≃ q rel {x, y}.

Composition of morphisms in Π1(X) is given by concatenation of representa-
tive paths. Definition 2.2 shows it is well-defined. Constant paths represent the
identity morphisms. We have associativity of morphisms by proposition 2.2, so
Π1X is a category. The reverse path construction shows that Π1X is a groupoid.

A continuous function f : X → Y induces a functor Π1f : Π1X → Π1Y
between groupoids sending each x ∈ X to f(x) ∈ Y and each path p : x→ y to
the path f ◦ p : f(x)→ f(y). Hence, Π1 : Top→ Grpd is a functor.

The fundamental groupoid we just defined is the “absolute” version. There
is a relative version which will be the version we use later.
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We have a category Toppair with pairs of topological spaces (X,A), where
A ⊂ X, as objects. A morphism from (X,A) to (Y,B) is a continuous function
f : X → Y such that f(A) ⊂ B.

The fundamental groupoid of a pair (X,A) has as objects the set of points
in A. The morphisms are paths in X (modulo the homotopy rel end points
relation) which have end points in A. We denote it by Π1(X,A). This is a
groupoid and the assignment Π1 : Toppair → Grpd is again a functor.

The category Toppair has a subcategory Top∗ where objects are (X,A) with
A being a single point of X. The morphisms in Top∗ are exactly the same as
the morphisms in Toppair. The category Top∗ is called the category of pointed
topological spaces. The restriction of Π1 to Top∗ is denoted π1. The functor
π1 is called the fundamental group because the fundamental groupoid based
at a single point is indeed a group.

One may worry that the functor π1 we defined lands inGrpd instead ofGrp.
Books and articles on the subject do not address this point probably because
the concern seems pedantic. Here is a way to resolve the issue, but we do not
adopt it because of cumbersome notation. We could define Π1 as a functor
from Toppair,∗ to Grpd∗. The objects in Toppair,∗ are (X,A, x0) with x0 ∈
A ⊂ X and the morphisms are continuous functions f : (X,A, x0)→ (Y,B, y0)
satisfying f(A) ⊂ f(B) and f(x0) = f(y0). An object of Grpd∗ is a pointed
groupoid: a pair (G, x) where x is an object (base point) of the groupoid G. A
morphism of Grpd∗ is a functor between groupoids that preserves base points.
There is a functor Aut : Grpd∗ → Grp sending (G, x) to Aut(x) = HomG(x, x)
which is a group because G is a groupoid. A functor between pointed groupoids
induces a group homomorphism between the automorphism groups at the base
points. We may define π1 to be Π1 followed by Aut.

We now exhibit some more examples of groupoids and show some basic
calculations of fundamental groupoids.

Definition 2.6. Let E ⊂ Rn be a convex set and x, y ∈ E. Let p : x → y be
the straight line segment starting at x and ending at y. If q : x → y is a path
in E, then we have the straight line homotopy H : p ≃ q rel {x, y} given by
H(s, t) = (1− t)p(s) + tq(s) for all (s, t) ∈ I × I.

Example 2.1. Consider the open interval U = (−2, 2) ⊂ R with the base points
U0 = {−1, 1}. Using the straight line homotopy, we see that there is exactly one
morphism s : −1 → 1 in Π1(U,U0). Similarly, there is exactly one morphism
s−1 : 1→ −1. There are all the nontrivial morphisms of Π1(U,U0).

We can generalize this example slightly. Since Π1 is a functor, any pair
of space homeomorphic to (U,U0) produces the same (technically isomorphic)
fundamental groupoid. We shall denote Π1(U,U0) by I and depict the objects
and nontrivial morphisms more abstractly as

∗ •
For example, let S1 ⊂ C be the circle. Then Π1(S

1 \ {i} , {−1, 1}) = I.

Example 2.2. Consider the union of two disjoint open intervals U = (−2, 0)∪
(0, 2) ⊂ R with base points U0 = {−1, 1} ⊂ U . A morphism in Π1(U,U0)
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starting at 1 can only end at 1 because −1 is not in the same path component
as 1. If p : 1 → 1 is a path, then the straight line homotopy shows that
p = id1. Similarly for −1. This shows the fundamental groupoid Π1(U,U0) =
Π1(S

1 \ {i,−i} , {−1, 1}) is the discrete category consisting of two elements.

2.2 The van Kampen theorem

There are many formulations of the van Kampen theorem. We take the view-
point that the van Kampen theorem allows us to compute the fundamental
groupoid on a set of base points as the colimit on an open cover. In other
words, we can break a complicated space up by choosing a “nice” open cover,
compute the fundamental groupoid on each piece and glue them together to find
the fundamental groupoid of the original space.

We need a definition in the set-up of the van Kampen theorem.

Definition 2.7. Let X be a topological space. A subset X0 is representative
in X if X0 meets each path component of X.

Suppose U = {Uλ} is a finite open cover of a topological space X with the
property that every finite intersection is again in U . Let X0 ⊂ X be such that
each Uλ,0 = Uλ ∩X0 is representative in Uλ. The collection U∗ = {(Uλ, Uλ,0)}
is a poset under the subset relation, so it can be regarded as a category with
inclusions as morphisms.

Theorem 2.3 (Van Kampen, Brown). Let (X,X0) and U∗ be given as above.
Then

Π1(X,X0) ∼= colim
U∗

Π1(Uλ, Uλ,0).

Presently we give a sketch of the proof and comment on the hypothesis of
the theorem along the way. The full proof consists of fairly natural steps, but
it is a bit lengthy and at points technical, so we defer it to the appendix.

The functor Π1 gives a diagram U∗ → Grpd which we denote Π1|U∗ . We
think of the groupoid Π1(X,X0) as a constant functor. The theorem says that
Π1(X,X0) ∼= colimΠ1|U∗ . Subspace inclusion of (Uλ, Uλ,0) into (X,X0) makes
Π1(X,X0) a cocone under Π1|U∗ .

The main point of the proof is to show that the cocone is universal. This
amounts to showing that we have the following commutative diagram

Π1|U∗ Π1(X,X0)

G
∃!

Our definition of the functor Π1(X,X0)→ G will be guided by the commutativ-
ity of the diagram. It is also the reason why the functor is unique. Defining the
functor on the morphisms of Π1(X,X0) is the hard bit. This requires subdivid-
ing the morphism so that each piece lies entirely in some Uλ. Then we deform
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via a homotopy the endpoints of each such piece so that they are in Uλ,0 and
use Π1|U∗ ⇒ G. This is why we need Uλ,0 to be representative in Uλ.

We need to verify that the functor is well-defined on morphisms. This is
done in two steps. Given two paths representing the same morphism, each with
its own subdivision, we create a common refinement and join them up using a
homotopy that respects the refined subdivision. Then we deform the homotopy
connecting the two subdivisions to a better homotopy that allows us to use the
commutativity of the diagram, which shows that the functor is well-defined.

The step where we deform the homotopy is why the open cover U needs to
be finite. The van Kampen theorem is actually also true for infinite U and X0

only has to be representative in three-fold intersections of open sets in U if we
reformulate the statement using coequalizers (a special type of colimit)[4]. The
argument there is similar to the one presented here, except that the notion of
Lebesgue covering dimension is needed.

2.3 Fundamental group of the circle

The van Kampen theorem as it is produces a groupoid with multiple base points.
To obtain the fundamental group, we perform a second retraction [3, p. 245] to
reduce the number of base points down to one. From there, we show that BZ
is the fundamental group by verifying universal properties.

Proposition 2.4. Suppose that f : C → D is a functor injective on objects.
Let i : C′ → C be a subcategory such that i is full and essentially surjective.
Write the restriction of the functor f to C′ as f ′. Then there is a subcategory
j : D′ → D with deformation retractions r : C → C′ and r′ : D → D′ making the
following diagram a pushout.

C C′

D D′

r

f f ′

r′

(*)

Proof. We define the objects of D′ to be ObD′ = f(Ob C′) ∪ (ObD \ f(Ob C)).
For each pair d, d′ ∈ ObD′, we define D′(d, d′) = D(d, d′). The composition of
morphisms in D′ is inherited from D and this makes D′ a subcategory of D.

By construction, the inclusion functor j : D′ → D is fully faithful. The
functor j is also essentially surjective by definition. In principle, we can obtain
a deformation retraction just from the definition of D′. However, this is not
enough for our purpose because not any old deformation retraction will satisfy
the pushout square. Instead, we construct the deformation retraction r′ by
simultaneously exhibiting a natural isomorphism µ.

The corollary of proposition 1.2 gives a deformation retraction r : C → C′
and a natural isomorphism η : idC ∼= ir. Suppose that p : c0 → c′0 is a morphism
in C with ηc0 : c0 → c and ηc′0 : c′0 → c′ being the components of η at c0 and c′0.

We define µ by the following formula

µd0
=

{
fηc0 : fc0 → fc if d0 = fc0 where c0 ∈ Ob C;
idd0

: d0 → d0 if d0 ∈ ObD \ f(Ob C).
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The target of each component of µ is of the form jd for some object d in D′.
By the proof of proposition 1.2, there is a functor r′ such that µ : idD ∼= jr′.
By the remark following the corollary of proposition 1.2, if c0 is an object in C′,
then c = c0 and ηc0 = idc0 . Since ηc0 = idc0 when c0 is an object of C′, we have
idD ∼= jr′ relD′, so r′ is indeed a deformation retraction.

With the functors r and r′ we just constructed, we have the commutative
diagram (*). Indeed, if ηc0 : c0 → c, then we have

f ′rc0 = f ′c = fc = r′fc0,

showing that f ′r and r′f agree on objects. Suppose now that p : c0 → c′0 is a
morphism in C. Recall that in proposition 1.2, the morphisms rp and r′fp are
defined so that the following diagram commutes

c0 c

c′0 c′

ηc0

p irp

ηc′0

f

fc0 fc

fc′0 fc′

µfc0

fp firp

µfc′0

Since the morphisms r′fp and f ′rp both make the right-hand square com-
mute and the morphisms µfc0 and µfc′0

are both isomorphisms, we get r′fp =
f ′rp, which shows r′f = f ′r.

We just need to verify that if we have a commutative diagram

C C′

D E

r

f g

h

then there is a unique functor k : D′ → E making the diagram below commute.

C C′

D D′

E

r

f f ′
g

h

r′

k

Such a functor k must satisfy the equation kr′ = h. Thus, k = kr′j = hj. This
means the functor k is unique and that we must take k = hj as the definition.

We first compute hµd where d ∈ ObD. If d is not in f(ObC), then hµd =
hidd = idhd. If d = fc0 and ηc0 : c0 → c is the component of η at c0, then the
commutative square

c0 c

c c

ηc0

ηc0 idc

ηc=idc

shows rηc0 = idc. Therefore, hµd = hfηc0 = grηc0 = idgc. The important point
is that either case, hµd is an identity morphism.

12



We now show that h = hjr′. Let d0 be an object of D and µd0 : d0 ∼= d =
jr′d0. Applying h to both side of µd0 turns it into an identity morphism, so h
and hjr′ agree on objects. If q : d0 → d′0, then

hjr′s = h(µd′
0
sµ−1

d0
) = hµd′

0
◦ hs ◦ h(µ−1

d0
) = hs.

This shows that h = hjr′ = kr′.
Now, we only need to show that g = kf ′. Note that the functor f ′ satisfies

the equation jf ′ = fi. The calculation

kf ′ = hjf ′ = hfi = gri = g.

shows that the diagram (*) is a pushout.

Proposition 2.5. Pushouts can be composed. More precisely, consider the
following commutative diagram in a category C where the left and right squares
are both pushouts.

c0 c1 c2

c3 c4 c5

f10

f30

f21

f41 f52
f43 f54

Then the outer rectangle is a pushout.

Proof. Let d be another object in C making the square below commute.

c0 c2

c3 d

f21f10

f30 f2

f3

Considering f2f21 as a map from c1, we have the commutative square

c0 c1

c3 d

f10

f30 f2f21

f3

Since the left square is a pushout, we have an induced map f4 : c4 → d making
the diagram below commute.

c0 c1

c3 c4

d

f10

f30 f41 f2f21

f3

f43

f4
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The right square is a pushout, so we have an induced map f5 making the diagram
below commutative.

c1 c2

c4 c5

d

f21

f41 f52 f2

f4

f54

f5

Using the map f5, we have a commutative diagram

c0 c2

c3 c5

d

f21f10

f30 f52 f2

f3

f54f43

f5

Since the left and right squares are both pushouts, the maps f4 and f5 are
unique. In particular, the outer rectangle is a pushout.

Theorem 2.6. π1(S
1, 1) ∼= BZ.

Proof. Let X = S1 ⊂ C. Consider the base points X0 = {−1, 1} and the
open cover U = {U1, U2, U12, X} where U1 = S1 \ {i} , U2 = S1 \ {−i}. Let
U1,0 = U1 ∩ X0, U2,0 = U2 ∩ X0 and U12,0 = U12 ∩ X0. In example 2.1, we
calculated that Π1(U1, U1,0) = Π1(U2, U2,0) = I. Then we found in example 2.2
that Π1(U12, U12,0) = {∗, •} is the discrete groupoid of two elements.

By the van Kampen theorem, we have a pushout diagram

{∗, •} I

I Π1(X,X0)

Since the functor I ↪→ Π1(X,X0) is induced by inclusion of topological spaces,
it is clearly injective on objects. Consider the discrete subcategory {∗} of I. As
the morphism s : ∗ → • is an isomorphism and we have a unique morphism from
∗ to itself in I, the inclusion {∗} ↪→ I is fully faithful and essentially surjective.

The fundamental groupoid of X based at 1 is π1(X, 1) = Π1(X, {1}). We
have the following commutative diagram, where the right square is a pushout
by proposition 2.4

{∗, •} I {∗}

I Π1(X,X0) π1(X, 1)

r

r′
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Using proposition 2.5 we can glue the two pushout squares to obtain the pushout

{∗, •} {∗}

I π1(X, 1)

We show that we also have a pushout

{∗, •} {∗}

I BZf

As colimits in general are unique up to isomorphisms, this proves the theorem.
Let s : ∗ → • be the unique morphism in HomI(∗, •). Defining a functor from

I to a category is the same as picking an invertible morphism (i.e. isomorphism)
in that category and sending s to it. Let us define the functor f : I → BZ by
f(s) = 1. The square commutes by definition of f .

Let G be a groupoid. Suppose that we have the commutative square

{∗, •} {∗}

I G

g

h

By the commutativity of the square, h must map both objects of I to a
common object x in G. This means the unique object of BZ must be sent to x.
Since HomG(x, x) is a group, a functor from BZ is now exactly the same as a
group homomorphism from Z→ HomG(x, x).

The commutativity of the diagram

{∗, •} {∗}

I BZ

G

g
f

h

k

forces us to define k(1) = k(f(s)) = h(s). A homomorphism Z → HomG(x, x)
is uniquely determined by the image of 1 ∈ Z. Therefore, the functor k making
the diagram commute exists and is unique. This concludes the proof.

A Proof of the van Kampen theorem

The key to proving the van Kampen theorem is the idea of subdivisions. Given a
map α from a compact metric space to a space X and an open cover U = {Uλ}
of X, we often want to subdivide the domain into smaller pieces so that the
image of each piece under α lies entirely in some open set in U . The Lebesgue
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number lemma guarantees this is possible if the pieces are chosen sufficiently
small. We state the lemma without proof since it is a standard fact [3, p. 91].

Lemma A.1 (Lebesgue number lemma). Let U be an open covering of a com-
pact metric space (X, d). There is a δ > 0 such that for each subset of X having
a diameter less than δ, there exists an element of U containing it. This number
δ is called a Lebesgue number for U .

How one subdivides the domain depends on the problem at hand. For in-
stance, the excision theorem for homology can be proved by barycentric sub-
division of simplices [7, p. 119]. For an absolute version of the groupoid van
Kampen theorem, we can choose the subdivision almost naively [9]. One may
follow this swift and elegant proof by a categorical retraction lemma to deduce
a van Kampen theorem for the fundamental groupoid relative to a set of base
points [3, pp.240-245].

We shall, however, take a slightly different route. Upon closer examination of
the proof of the absolute version of the groupoid van Kampen theorem, one sees
that if we are slightly more careful with the subdivision, we can deduce a more
general version relative to a set of base point without performing a categorical
retraction. This has the advantage of being more amenable to generalization to
higher dimensions [5, p. 30]. The geometric modifications are fairly natural, so
we first set up the necessary tools for the change.

The standard m-dimensional cube Im has 2m faces, each homeomorphic to
Im−1. Let F1, . . . , F2m be the faces of Im and the labelling chosen so that F1 =
{(x1, . . . , xn−1, 0) : 0 ≤ xi ≤ 1} and F2m = {(x1, . . . , xn−1, 1) : 0 ≤ xi ≤ 1}. In
other words, F1 is the “bottom face” of Im and F2m is the “top face” of Im.

We first show a result that allows us to construct homotopies that satisfy
certain desired conditions.

Lemma A.2. Let F1, . . . , F2m be the faces of Im, where F1 is the bottom face
and F2m is the top face. Suppose that U is a topological space and h : F1 ∪
· · · ∪ F2m−1 → U is continuous. Then there is a continuous map H : Im → U
making the following diagram commute.⋃2m−1

i=1 Fi U

Im

h

ι
H

In particular, H : h|F1
≃ H|F2m

.

Proof. Let P = ( 12 , . . . ,
1
2 , 2) ∈ Rm. We can define a continuous surjective map

p : Im →
⋃2m−1

i=1 Fi by projecting from the point P . For each point x ∈ Im,
there is a unique ray passing through the points P and x. We define p(x) to be

the unique intersection of this ray and
⋃2m−1

i=1 Fi.
Then we may define H : Im → U by the formula H(x) = h(p(x)). If

x ∈
⋃2m−1

i=1 Fi, then H(ι(x)) = h(p(ι(x))) = h(x) because p(ι(x)) = x.
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Lemma A.2 also allows us to construct a “filling” of any space that is home-
omorphic to Im by composing with an appropriate homeomorphism. This is
helpful because we will apply the lemma to cubes that are translated and scaled.

Given a map from a cube and a subdivision, we can obtain a new map that
behaves in a nicer way on the subdivision structure via a homotopy. We make
the idea precise in the next lemma. The proof involves applying lemma A.2
inductively. Let us fix some set-up for the remaining part of the appendix.

Suppose that U = {Uλ} is a finite open cover for X such that the intersection
of finitely many open sets of U is again in U . Let X0 ⊂ X be such that
Uλ,0 = Uλ∩X0 is representative in Uλ and form the collection U∗ = {(Uλ, Uλ,0)}.

Let the cube Im be subdivided by planes parallel to the coordinate hyper-
planes xi = 0 with 1 ≤ i ≤ m, into closed cubes cl. For each integer 0 ≤ n ≤ m,
we will denote by In the set of all n-dimensional faces of cubes occurring in the
subdivision of Im. For example, v ∈ I0 if it is the vertex (homeomorphic to I0)
of some cube cl of the subdivision. An element e ∈ I1 is the edge (homeomorphic
to I1) of some cube cl of the subdivision. Similarly for other In. In particular,
the set of subcubes cl is exactly Im. We call the set In the n-skeleton 1 of Im.

Now we state and prove the following lemma [2, p. 219].

Lemma A.3. Let α : Im → X be continuous. Let the cube Im be subdivided by
planes parallel to the coordinate hyperplanes xi = 0 with 1 ≤ i ≤ m, into closed
cubes cl such that for each cl, there is an open set Uλ of U with α(cl) ⊂ Uλ.

Given the conditions we imposed, there is a map θ : Im → X that maps
the vertices of each cube cl into X0 with a homotopy H : α ≃ θ satisfying the
following two conditions:

i) if C ∈ In with α(C) ⊂ Uλ, then H(C × I) ⊂ Uλ;
ii) if F0 is a face of some C ∈ In and α(F0) ⊂ X0 already, then H is the

constant homotopy on F0. In particular, H(F0 × I) ⊂ X0.

Proof. Constructing a homotopy H : α ≃ θ is the same as defining a map from
Im × I → X that restricts to α on the bottom face and θ on the top face. The
strategy of the proof is to define H inductively on the n-skeleton of Im.

Let v ∈ I0 be a vertex of the subdivision. Since the cover U is finite,
we consider the intersection Uλ of all those open sets that contain α(v). By
assumption, U is closed under finite intersections, so Uλ ∈ U . If α(v) ∈ Uλ,0,
then we define H|{v}×I to be the constant path at α(v) and θ(v) = α(v). If
α(v) /∈ Uλ,0, there is an x0 ∈ Uλ,0 together with a path from α(v) to x0 that
lies entirely in Uλ. Define H|{v}×I to be this path and θ(x) = x0.

We emphasize the values of θ at this stage because θ sends the vertices in the
subdivision into X0 as we wanted. What we do later will not affect it. Notice
that by construction, condition i) is satisfied in the case n = 0, condition ii) is
satisfied in the case n = 1.

Suppose that for each 0 ≤ k ≤ n− 1 and F ∈ Ik, we have defined H|F×I so
that condition i) is satisfied for 0 ≤ k ≤ n− 1 and ii) is satisfied for 1 ≤ k ≤ n.

1An n-skeleton is technically the union of elements in what we call an n-skeleton; we choose
this name because the subdivision makes the cube Im into a CW-complex, but we do not need
any facts about CW-complexes in the proof of lemma A.3.
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Let C ∈ In and F1, . . . , F2n be the 2n faces of C. As C is part of some cube
cl, α(C) is contained entirely in some open set of U . We can again take the
intersection Uλ of all open sets containing α(C) and Uλ ∈ U .

We identify C × I with In × I with C being the bottom face and F1 ×
I, . . . , F2n × I being the side faces. Similar to the 0-skeleton, if α(C) ⊂ Uλ,0,
then the easiest way to satisfy condition ii) for the (n + 1)th case is to define
H|C×I to be the constant homotopy. The function H|C×I is indeed continuous
because each Fi lies in Uλ,0 and H|Fi×I is a constant homotopy by induction.
This function H|C×I also satisfies condition i) for the nth case.

The other possibility is α(C) ̸⊂ Uλ,0. The constant homotopy construction
as shown above applied at the step going from In−2 to In−1 shows that condi-
tion ii) in the nth case is already met by the homotopies H|F1×I , . . . ,H|F1×I

defined by induction. Lemma A.2 gives a homotopy H|C×I that restricts to
H|F1×I , . . . ,H|F2n×I and α|C . The homotopy H|C×I satisfies condition i) in
the nth case. This completes the inductive construction.

Now we are ready to give a proof of the van Kampen theorem.

Proof of theorem 2.3. We show that Π1 (X,X0) satisfies the universal property
of the colimit in question.

The standard inclusion map (Uλ, Uλ,0) ↪→ (X,X0) induces a map ιλ :
Π1(Uλ, Uλ,0) ↪→ Π1(X,X0). If the induced map of (Uλ, Uλ,0) ↪→ (Uµ, Uµ,0)
is ιµλ : Π1(Uλ, Uλ,0) ↪→ Π1(Uµ, Uµ,0), then we have the commutative diagrams

(Uλ, Uλ,0) (Uµ, Uµ,0)

(X,X0)

Π1

Π1(Uλ, Uλ,0) Π1(Uµ, Uµ,0)

Π1(X,X0)

ιµλ

ιλ ιµ

This shows that the system (ιλ) forms a natural transformation from the functor
Π1 : U∗ → Grpd to the constant functor Π1(X,X0) : U∗ → Grpd.

Suppose G is a groupoid that forms a cocone under the functor Π1 : U∗ →
Grpd. Let the natural transformation from Π1 on U∗ to G be given by (νλ).
We need to show that there is a unique functor ν : Π1(X,X0)→ G that makes
the following diagram commute.

Π1(Uλ, Uλ,0) Π1(Uµ, Uµ,0)

Π1(X,X0)

G

ιµλ

ιλ

νλ

ιµ

νµ

ν

for each pair of λ and µ.
Defining ν on objects is quite straightforward. If x ∈ X, then x ∈ Uλ for

some λ. Due to the diagram above, the functor ν has to satisfy ν ◦ ιλ, so we
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have to define ν(x) = νλ(x). We need to show that ν is well-defined on objects.
Indeed, suppose we have x ∈ Uµ. The open set Uκ = Uλ ∩ Uµ is in U . By the
commutativity of the diagram below

Π1(Uκ, Uκ,0)

Π1(Uλ, Uλ,0) Π1(Uµ, Uµ,0)

G

ιλκ ιµκ

νλ νµ

we have νλ(x) = νµ(x). This shows ν(x) does not depend on the cover x is in.
Let α : x → y be a path in X joining two points x, y ∈ X0. We would like

to subdivide I as
0 = t0 < t1 < · · · < tl = 1.

The Lebesgue number lemma tells us that we can choose ti and l suitably, so
that each α([ti, ti+1]) ⊂ Uλ for some λ. Let us write Ui instead to emphasize
that this open set contains α([ti, ti+1]). Similarly, we write Ui,0 for Uλ,0 and νi
for νλ. We cannot use the cocone condition yet to determine where α|[ti,ti+1]

must be sent because α(ti) and α(ti+1) are most likely not in Ui,0.
This is where lemma A.3 helps us. Using the m = 1 case of lemma A.3, we

construct a path θ from x to y with both θ(ti), θ(ti+1) ∈ Ui,0, together with a
homotopy H : α ≃ θ that is constant on α(ti) if α(ti) ∈ Ui,0.

We define ν(α) = νn−1(θ|[tn−1,tn]) . . . ν0(θ|[t0,t1]), omitting the · in concate-
nation of paths for brevity. Again, we need to show that ν is well-defined on
morphisms. If we have a homotopy K : α ≃ α′ rel {x, y}, then we want to show
that ν(α) = ν(α′).

Our procedure produces ν(α′) by subdividing the interval I into

0 = t′0 < t′1 < · · · < t′l′ = 1.

so that each α′([t′j , t
′
j+1]) is contained in some U ′

j . Lemma A.3 gives us a ho-
motopy H ′ : α′ ≃ θ′ that is constant on α′(t′j) if α(t

′
j) ∈ U ′

j,0.
Let R be the reverse homotopy of H. By concatenating homotopies as in

definition 2.2, we obtain a homotopy G = H ′ ·K ·R : θ ≃ θ′. We would like to
modify the homotopy G using the m = 2 case of lemma A.3. Then we can use
νi and νj to show that ν(α) = ν(α′).

We begin by subdividing I2 parallel to the coordinate axes. By the Lebesgue
number lemma, if we subdivide I2 = I × I into squares with sufficiently small
diameters, G must map each square entirely into some open set in U . Let the
first component of I2 be subdivided into

0 = τ0 < τ1 < · · · < τn = 1

with each ti and t′j occurring in the subdivision. Let the second component of

I2 be subdivided into

0 = σ0 < σ1 < · · · < σr = 1.
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We have G([τp, τp+1]× [σq, σq+1]) ⊂ Upq, where Upq ∈ U . Lemma A.3 gives
us a homotopy L : G ≃ G with the property that G([τp, τp+1]× [σq, σq+1]) ⊂ Upq

and G(τp, σq) ∈ Upq,0 for every vertex (τp, σq) of the subdivision of I2.
Let θ the path defined by G|I×{0} and θ′ the path defined by G|I×{1}.
Consider θ|[ti,ti+1]. The interval [ti, ti+1] is already subdivided into

ti = τpi
< τpi+1 < · · · < τpi+1

= ti+1.

The first condition of lemma A.3 tells us that each L([τpi+k, τpi+k+1]×{0}×
I) ⊂ Ui, so L([ti, ti+1]× {0} × I) ⊂ Ui. The homotopy

L|[ti,ti+1]×{0}×I : θ|[ti,ti+1] ≃ θ|[ti,ti+1]

lies entirely in Ui with L({ti}× {0}× I), L({ti+1}× {0}× I) ⊂ Ui,0. This gives
the equality νi(θ|[ti,ti+1]) = νi(θ|[ti,ti+1]). Moreover,

θ|[ti,ti+1] = θ|[τpi+1
,τpi+1−1] . . . θ|[τpi ,τpi+1].

Let the intersection of Ui and U(pi+k)0 be Uk. The commutative diagram

Π1(Uk, Uk,0)

Π1(U(pi+k)0, U(pi+k)0,0) Π1(Ui, Ui,0)

G

ι(pi+k)0,k ιik

ν(pi+k)0 νi

shows

νi(θ|[ti,ti+1]) = νi(θ|[τpi+1−1,τpi+1
]) . . . νi(θ|[τpi+1−1,τpi+1

])

= νpi+10(θ|[τpi+1−1,τpi+1
]) . . . νpi0(θ|[τpi ,τpi+1]).

Therefore,

ν(α) = νl−1(θ|[tl−1,tl]) . . . ν0(θ|[t0,t1]) = ν(n−1)0(θ|[τn−1,τn]) . . . ν00(θ|[τ0,τ1]).

Similarly,

ν(α′) = νl′−1(θ
′|[t′

l′−1
,t′

l′ ]
) . . . ν0(θ

′|[t′0,t′1]) = ν(n−1)(r−1)(θ′|[τn−1,τn]) . . . ν0(r−1)(θ′|[τ0,τ1]).

We are in a much better position now because the homotopy G is exactly what
we need to show that

ν(n−1)0(θ|[τn−1,τn]) . . . ν00(θ|[τ0,τ1]) = ν(n−1)(r−1)(θ′|[τn−1,τn]) . . . ν0(r−1)(θ′|[τ0,τ1]).

Recall that we have G([τp, τp+1] × [σq, σq+1]) ⊂ Upq. As all vertices of the
square [τp, τp+1]× [σq, σq+1] are in Upq,0, it makes sense to ask whether

G|[τp,τp+1]×{σq} = G|−1
{τp+1}×[σq,σq+1]

G|[τp,τp+1]×{σq+1}G|{τp}×[σq,σq+1]
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as morphisms in Π1(Upq, Upq,0). The answer is yes and a homotopy can be given
by modifying the projection map of lemma A.2 suitably. As νpq is a functor, we
have an equality of “conjugate” morphisms in G

νpq(G|[τp,τp+1]×{σq}) = νpq(G|{τp+1}×[σq,σq+1])
−1νpq(G|[τp,τp+1]×{σq+1})νpq(G|{τp}×[σq,σq+1]).

Note that G : θ ≃ θ′ rel {x, y}. By the second condition in lemma A.3, we
have G : θ ≃ θ′ rel {x, y}. This means for any [σq, σq+1], both G|{0}×[σq,σq+1]

and G|{1}×[σq,σq+1] are constant paths. Thus, ν0q(G|{0}×[σq,σq+1]) is the identity

morphism on ν0q(G(0, σq)).
By restricting to the intersection Upq ∩Up(q+1) as we have done a few times

already and conjugating morphisms, we get the following sequence of equalities.

ν(α)

=ν(n−1)0(θ|[τn−1,τn]) . . . ν00(θ|[τ0,τ1])
=ν(n−1)0(G|[τn−1,τn]×{σ1}) . . . ν00(G|[τ0,τ1]×{σ1})

=ν(n−1)1(G|[τn−1,τn]×{σ1}) . . . ν01(G|[τ0,τ1]×{σ1})

...

=ν(n−1)(r−1)(G|[τn−1,τn]×{σr−1}) . . . ν0(r−1)(G|[τ0,τ1]×{σr−1})

=ν(n−1)(r−1)(θ′|[τn−1,τn]) . . . ν0(r−1)(θ′|[τ0,τ1])
=ν(α′).

This also showed that our definition of ν(α) is independent of subdivision since
that is the case when α′ = α and the homotopy K is the identity.

We have proved that ν is well-defined and commutes with the natural trans-
formation (νλ) by construction. The fact that ν is a functor and is the unique
functor Π1(X,X0)→ G commuting with the natural transformation (νλ) follows
from subdividing the morphisms of Π1(X,X0) and checking on Π1(Uλ, Uλ,0).
Hence, Π1(X,X0) ∼= colimU∗ Π1(Uλ, Uλ,0) as claimed.
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