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0. INTRODUCTION

This note serves to compare the notion of a locally constant function
and a function that is constant on connected components. We derive a
criterion for when the two notions coincide and give two applications.
The applications are both classical results, but it is nice to discuss them
using the language of locally constant functions.

1. WHEN IS A FUNCTION THAT IS CONSTANT ON CONNECTED
COMPONENTS LOCALLY CONSTANT?

Let X,Y be topological spaces and f : X — Y a function. We say
that f is locally constant at « € X if there is some neighborhood of x
on which f is constant. If f is locally constant at every x € X, then f
is said to be locally constant on X.

Recall that the connected component C' of x € X is the largest
connected subset of X containing x. Equivalently, whenever S C X is
a connected subset containing x, we have S C C.

A basic property of locally constant functions that gets used all the
time is the following.

Proposition 1.1. Let X be connected and f : X — Y be locally con-
stant. Then f is constant.

Proof. Let y € Y be in the image of f. We show that y must be the
only point in the image of f, so f is constant.

The set f~!'({y}) is open because at each x € f~'({y}), there is a
neighborhood U of & which f maps identically to the point y. Similarly,
the set [~ (Y \ {y})) = U.eyryy /7 ({2}) is open.

Since X = f~'({y}) U f71(Y \ {y}) is connected, we must have

YN\ {y}) = ¢ O

Proposition 1.2. Let X = |JC; where each C; is a connected compo-
nent of X and f : X — Y be locally constant. Then f is constant on

each Cj.
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It feels intuitive that the converse to proposition should be true
too. However, that is not the case as illustrated by the next example.

Example 1.1. Let X = {O}U{% ‘n € N} be given the subspace topol-
ogy from R. The connected components are simply all the singletons.
The function idyx : X — X is constant on each connected component.
It is not locally constant at 0 € X because every neighborhood of 0
contains a point % for some n € N.

The example can be generalized. A space is called totally discon-
nected if its connect components are precisely the singletons. Every
function on a totally disconnected space is constant on connected com-
ponents. The converse to proposition fails for all spaces that are
totally disconnected but not discrete, such as X. We can see this by
considering the identity function on this kind of spaces. Some other ex-
amples of spaces that are totally disconnected but not discrete include
Q with its standard topology and the cantor set.

Note that the space X in example is in fact a normal space and
idx is continuous, so imposing separation axioms on the domain and
codomain or continuity condition on the function is unlikely to yield a
converse to proposition [I.2]

There is, nevertheless, a converse of some kind. The statement is
fairly natural and the proof is not hard, but the condition might be
slightly tricky to come up with in the first place.

Proposition 1.3. Ifx € X has a connected neighborhood and f : X —
Y s constant on connected components, then f is locally constant at
x.

It is not at all difficult to apply proposition [1.3]

Proposition 1.4. Let X be locally connected. Then f : X — Y s
locally constant if and only if X is constant on connected components.

Both directions of proposition are useful in practice. We give an
application for each.

2. CONNECTED COMPONENTS OF OPEN SETS IN LOCALLY
CONNECTED SPACES

When one first learns the definition of a connected component, one
might think that connected components are always clopen. It is indeed
true that every connected component is closed. This is due to the
fact that the closure of a connected subset is connected. But it is not
true that connected components have to open. Take the space X from
example The point 0 € X is not open.



LOCALLY CONSTANT VS. CONSTANT ON CONNECTED COMPONENTS 3

We give an easy proof that connected components of an open subset
of R™ is open using proposition We need a standard property of
locally constant functions.

Proposition 2.1. Let f : X — Y be locally constant at x € X. Then
f is continuous at x.

Proposition 2.2. Let X be locally connected and U = U;c;U; be the
connected components of the open set U C X. Then each U; is open.

Proof. Equip the set I with the discrete topology and consider the func-
tion f: U — I given by f(x) =i if z € U;. Then f is constant on each
connected component of U, so it is locally constant by proposition [T.4]

By proposition 2.1, we see that f is continuous. Therefore, U; =

F7Y({7}) is open. O

Corollary. Open subsets of R™ have open connected component. More
generally, open subsets of manifolds have open connected component.

One might think that functions that are constant on connected com-
ponents are continuous, so we could have dispensed with proposition[2.1
in the proof of proposition However, recall from example that
any function, continuous or not, on a totally disconnected spaces that
is not discrete must be constant on connected components. We cannot
take a shortcut.

3. THE ZEROTH DE RHAM COHOMOLOGY OF A MANIFOLD

As an application of proposition [I.2], which is the “usual” direction
of proposition [1.4, we compute the zeroth de Rham cohomology of a
manifold X. Some notation first.

Take an n-manifold X and p € X. The local coordinates of a chart
(U, ¢) are ', ..., 2™, where each 2° = 7’ 0 ¢ and r' is the standard ith
coordinate in R"™.

The th partial derivative of a smooth function f at a € U C R"
is denoted gri (a). This is only a notation; we are not “differentiating
with respect to a function”.

Relative to a chart (U, ¢) on a manifold, the ith partial derivative of
a smooth function f is

O gy = 2207 (4,

Let us recall the definition of the zeroth de Rham cohomology.

Definition 3.1. Let X be an n-manifold. The zeroth de Rham coho-
mology, denoted HY,(X), is the collection of C* functions f : X — R
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such that at each p € X, we have a chart (U, ¢) containing p with local

coordinates z!,..., 2" and ggﬁ (p) =0 for each i = 1,...,n. Note that

HY»(X) is an R-vector space.

We first look at smooth functions on an open ball in R". For each
a € R", the open ball of radius r > 0 is denoted B, (a).

Proposition 3.1. Let a € R" and f : B.(a) — R be smooth. Then
gfi (x) =0 for every x € B,(a) if and only if f is constant on B,(a).

Proof. Fix a point b € B,(a). The line [ : [0,1] — B,(a) joining a to b
given by (t) = tb+ (1 — t)a for t € [0, 1] is differentiable on (0, 1) and
continuous at the end points. Applying the mean value theorem and
then the chain rule to f ol shows that f(b) = f(a). The other direction
is obvious. U

Proposition [3.1] can be extended in the obvious manner to arbitrary
open subsets of R™.

Proposition 3.2. Let U C R"™ be open and f : U — R be smooth.

Then gﬂ (x) =0 for every x € U if and only if f is locally constant.

We can extend proposition further to manifolds.

Proposition 3.3. Suppose that f is any smooth function on a manifold
X. Then f € HYp(X) if and only if f is locally constant.

The de Rham cohomology HY (X)) is now obvious.
Proposition 3.4. Let X = J,.; C; be the connected components of a

manifold X. Then we have an isomorphism of vector spaces
Hpp(X) =R’
where R is the R-vector space of functions I — R.

For another nice usage of locally constant functions, see the first
chapter of [I] for a proof of the fundamental theorem of algebra using
differential topology.
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