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1. The criterion

Given two sets of vectors A,B ⊂ Zm, we would like to tell if they
span the same lattice. In other words, we would like to check whether
SpanZA = SpanZB.

For every u, v ∈ Rm, we write u · v for their dot product. If S ⊂ Rm,
we define

u · S = {u · v : v ∈ S} .
Here is the criterion.

Proposition 1.1. Let A,B ⊂ Zm. The condition SpanZA = SpanZB
is equivalent to the condition that for every u ∈ R1×m, we have u·A ⊂ Z
if and only if u ·B ⊂ Z.

Before we give the proof, let us recall some basic linear algebra facts.

2. Some linear algebra facts

It is possible to “represent” vectors in the dual space by dotting with
some vector. In the proposition below, the dot product has the obvious
meaning.

Proposition 2.1. Let k be a field and e1, . . . , er ∈ km be linear inde-
pendent. Then there are vectors u1, . . . , ur ∈ km such that ui · ej = δij,
where δij is the Kronecker delta.

Proof. Let V = Spank {e1, . . . , er}. Then V ∼= kr via a k-linear map
and e1, . . . , er correspond to the standard basis of kr under this isomor-
phism. We can represent this linear map by an r×m matrix E. Define
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for each i = 1, . . . , r a vector ui by the ith row of E. They satisfy the
requirement of the proposition. □

Proposition 2.1 can be understood as saying that the dot product is
a nondegenrate bilinear pairing. Thanks to the pairing given by the
dot product, we can make the dual vectors live inside the same space
as the vectors we care about.

Proposition 2.2. Take any field k ⊃ Q. The linear independence of
v1, . . . , vr ∈ Zm over Z,Q and k coincide.

Proof. By clearing denominators we can change a Q-linear dependence
relation to a Z-linear dependence relation. Thus, Z-linear independence
implies Q-linear independence.

If v1, . . . , vr are linearly independent over Q, we may by proposi-
tion 2.1, find vectors u1, . . . , ur ∈ Qm such that ui ·vj = δij. By dotting
with u1, . . . , ur, we see that v1, . . . , vr are linearly independent over k.

Finally, if v1, . . . , vr are linearly independent over k, they are clearly
independent over Z. □

Proposition 2.3. A subgroup L of Zm is isomorphic to Zr for some
r ≤ m. More explicitly, this means L = SpanZ {e1, . . . , er} for some
Z-linearly independent e1, . . . , er.

Proof. We induct on m. When m = 1, any nontrivial subgroup of Z is
nZ for some n ∈ Z \ {0}, so the proposition is obvious.

Now we show that the proposition holds for Zm+1 provided it holds
for Zm. Consider a nontrivial subgroup L ⊂ Zm+1.

We have a projection π : L → Z onto the last coordinate, defined by
π(x1, . . . , xm+1) = xm+1 for each (x1, . . . , xm+1) ∈ L. DenoteK = kerπ
and I = imπ. Then K can be regarded as a subgroup of Zm and I a
subgroup of Z.

By induction hypothesis, we have e1, . . . , er ∈ Zm × {0} ⊂ Zm+1 for
some r ≤ m forming a basis for K. On the other hand, I = nZ for
some n ∈ Z. We pick some er+1 ∈ L such that π(er+1) = n.

We are done if we can show that e1, . . . , er+1 forms a Z-basis for L.
The Z-linear independence of e1, . . . , er+1 follows by applying π to any
linear dependence relation and then using the linear independence of
e1, . . . , er.
Clearly SpanZ {e1, . . . , er+1} ⊂ K. For the reverse containment, take

any x ∈ L. Since π(x) = kn for some k ∈ Z, we have x − ker+1 ∈ K
which finishes the proof. □
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3. Proof of the criterion

Proof of 1.1. We first deal with the easy direction. Suppose that SpanZA =
SpanZB. We show that u · A ⊂ Z implies that u · B ⊂ Z. Then the
opposite implication follows by symmetry.

Fix a vector u ∈ Rm such that u · A ⊂ Z. Now, take some b ∈ B.
There are a1, . . . , ar ∈ A and λ1, . . . , λr ∈ Z such that b = λ1a1 + · · ·+
λrar. Then u · b = λ1(u · a1) + · · · + λr(u · ar) ∈ Z. This finishes the
proof of the easy direction.

Assume now for every u ∈ Rm, we have u · A ⊂ Z if and only if
u · B ⊂ Z. Fix an a ∈ A. We would like to show that a ∈ SpanZB.
Then we have SpanZA = SpanZ B by symmetry.
We choose a Z-basis e1, . . . , er ∈ Zm for SpanZB using proposi-

tion 2.3. They form a basis for the R-vector space SpanRB. Extend
e1, . . . , er to a basis e1, . . . , em of Rm. By proposition 2.1, we have
vectors u1, . . . , um ∈ Rm such that ui · ej = δij for each i, j = 1, . . . ,m.
For each b ∈ B, there are µ1, . . . , µr ∈ Z such that b = µ1e1 + · · · +

µrer. Therefore, u1 · B, . . . , ur · B ⊂ Z. Moreover, for any c ∈ R,
(cur+1) ·B = · · · = (cum) ·B = {0} ⊂ Z.
We may express a = λ1e1 + · · · + λmem. If one of λ1, . . . , λr is not

an integer, say λ1, then u1 · a = λ1 /∈ Z is a contradiction. This
shows λ1 = · · · = λr ∈ Z. If one of λr+1, . . . , λm is nonzero, say
λr+1, then ( 1

2λr+1
ur+1) · a = 1

2
/∈ Z is a contradiction. This shows

λr+1 = · · · = λm = 0.
We are done because a ∈ SpanZ {e1, . . . , er} = SpanZB. □
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